首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
深层地温包括40cm、80cm、160cm和320cm,它们的日变化值随着深度的增加变化幅度而越小。如果相邻两正点的温度变化值≥0.5℃日变化值,除了软件给出"警告"提示外(被动检查),还要主动去检查、判断数据的正确性,采用简单的排除方法。  相似文献   

2.
通过对深圳市三种天气形势下不同深度的地温日变化数据研究发现:晴天和阴天情况下,地面和浅层地温呈正弦曲线日变化,昼高夜低。地面温度振幅最大,深度越深,振幅越小,位相越靠后,周期越长。晴天日变化幅度远大于阴天日变化幅度。阴雨天,地面温度和浅层地温随时间逐步降低。地温垂直结构也存在日变化关系,晴天时,正午时段从地面到40cm土壤,温度随深度降低,40cm以下地温逐渐升高,凌晨从地面至320cm土壤,地温依次升高;阴天和阴雨天时,除正午前后几个时次地面温度高于5cm地温外,其他时间从地面到320cm土壤,温度依次升高。但是三种天况下,160cm以下深层地温的日变化幅度均小于0.2℃。  相似文献   

3.
宁阳县气象站为国家一般气象观测站,为该站迁址后的地温观测资料序列延续和订正提供依据,对2019年新、旧气象站观测的0cm地温、浅层(5cm、10cm、15cm、20cm)地温和深层(40cm、80cm、160cm、320cm)地温的月平均及年平均值进行比较。结果表明:总体上全年新、旧站地温差异较小,月平均总体差值在―3.5~1.6℃;地温差异深层较0cm、浅层略大,其中,2月和3月160cm、320cm深层地温月平均值差异较明显,温差大于2℃。  相似文献   

4.
利用廊坊市1980—2015年间地温、降水等观测数据,研究了该地区0~40 cm地温的年、月变化特征、0~320 cm地温的日变化特征及关键农时初、终霜冻日期变化等特征。结果表明,随年代变化,0、10、20 cm年平均地温呈上升趋势,40 cm层地温变化趋势特征不明显;大气降水量和0~40 cm层地温之间存在明显的相互影响关系,当年降水量为偏多或转偏多时,一般地温降低,当年降水量为偏少或转偏少时,地温以升高为主;0~40 cm层地温每年3月开始上升,7月达到峰点,随后逐步下降,在次年1月达到最低点,随年代变化,1—5月、11—12月地温升降幅度比较明显,值得关注;0~40 cm层地温日变化曲线峰、谷点随深度依次延迟2~5 h,80~320 cm层地温日变化曲线走势相反,10月至次年2月为下升趋势,4—7月为上降趋势;廊坊初、终霜冻及10 cm地温稳定通过10℃日期随年代变化出现延迟和提前现象。  相似文献   

5.
运用地面气象测报业务软件,结合铂电阻地温传感器分别采集地震前后4年(2004~2012年)的土层温度,探讨汶川Ms 8.0级地震前后温江不同土层温度的变化特征。结果表明,随着土层的加深,土壤温度呈下降的趋势,且在0 cm时达最高;0、10、15、20 cm土层的5月份平均温度随着年份的增加,其温度总体上表现出先增加后降低的趋势,在2007年5月时达最高值;而40、80、320 cm土层的5月份平均温度的年际变化相对较小。浅层(0~40 cm)地温的变化幅度较大,而深层地温(80~320 cm)的变化幅度较小;其原因主要是由于浅层地温受地面天气现象的影响较大,而深层地温则受此影响较小,但其地温总体上呈逐渐增加的趋势,与太阳辐射的增强有关,且基本不受地震释放的热量影响。地震对不同土层的温度均有不同程度的影响,且随土层的加深,其影响逐渐降低,在0、5、10、15、20 cm的土层温度中,其作用尤为明显。地震对不同土层温度的影响集中体现在震后1~3 d,而震前无明显的变化,这也是当前地震预警预报较低的原因之一。  相似文献   

6.
利用位于南京北郊的南京信息工程大学观测基地2010年各层(0、5、10、15、20、40、80、160、320 cm)地温数据,采用统计分析方法对南京北郊地温的变化特征进行了分析,揭示南京市浦口地区地温与时间、深度的变化关系。结果表明,南京北郊地区表层地温以及浅层地温有明显的季节变化和日变化,呈近似于正弦曲线的变化趋势。从地表到20 cm深时,地温的日变化逐渐减弱;当深度在40~320cm时,地温日变化已不明显。在垂直方向上,各层地温日变化幅值随着深度增加而减小,随着深度的增加峰值出现的时间逐渐滞后。  相似文献   

7.
本文对谷城县国家基本气象观测站检定过程中发现的备份站深层地温套管内积水问题进行了处理,对深层地温温度传感器进行了周期检定,并对检定前后的深层地温数据进行了对比分析。结果表明,备份站深层地温80、320 cm套管积水主要是由于降水引起的,套管内积水会引发深层地温数据异常偏高,其中80 cm深层地温偏高13.21℃,320 cm深层地温偏高13.18℃。在对积水进行处理后,备份站深层地温恢复正常,两站深层地温数据一致性较好。同时,为了确保深层地温传感器的正常运行和观测数据的准确可靠,应按照规定的时间进行周期检定和维护工作,尤其要做好日常维护和降水后检查深层地温进水情况。  相似文献   

8.
河间气象站迁站对比观测数据分析   总被引:1,自引:0,他引:1  
许丽景  李海川 《安徽农业科学》2013,(14):6376-6379,6405
利用2012年河间国家一般气象站新旧站的气温、相对湿度、风、深层地温等资料,对河间气象站迁站观测数据进行统计对比分析。结果表明,由于所使用仪器设备不同、站址周围环境不同、下垫面性质不同,造成观测数据有一定差异。新旧站月平均气温差值为-0.5~0℃,月平均最高气温差值为-0.4~0.2℃,月平均最低气温差值为-0.8~0℃,月极端最高气温差值为-1.1~0.6℃,月极端最低气温差值为-1.2~0.3℃,年平均气温、年平均最高气温、年平均最低气温新站均低于旧站,年极端最高气温新站高于旧站,年极端最低气温新站低于旧站;新旧站月平均相对湿度差值为2%~6%,月最小相对湿度差值为-4%~5%,年最小相对湿度新旧站相同;新旧站月2 min平均风速差值为-0.1~0.4 m/s,月最大风速差值为-1.2~2.2 m/s,月极大风速差值为-2.0~2.8 m/s,年最大风速新站与旧站基本相同,年极大风速新站比旧站明显偏大;年风向频率新站小于旧站,年最多风向新站为S,旧站为SSW;新旧站40 cm地温月平均差值为-1.1~2.5℃,80 cm地温月平均差值为-2.4~2.1℃,160 cm地温月平均差值为-2.5~2.7℃,320 cm地温月平均差值为-1.6~1.1℃,40、160 cm深层地温年平均温度新站均高于旧站,80、320 cm深层地温年平均温度新站低于旧站。  相似文献   

9.
利用2012年河间国家一般气象站新旧站的气温、相对湿度、风、深层地温等资料,对河间气象站迁站观测数据进行统计对比分析。结果表明,由于所使用仪器设备不同、站址周围环境不同、下垫面性质不同,造成观测数据有一定差异。新旧站月平均气温差值为-0.5~0℃,月平均最高气温差值为-0.4~0.2℃,月平均最低气温差值为-0.8~0℃,月极端最高气温差值为-1.1~0.6℃,月极端最低气温差值为-1.2~0.3℃,年平均气温、年平均最高气温、年平均最低气温新站均低于旧站,年极端最高气温新站高于旧站,年极端最低气温新站低于旧站;新旧站月平均相对湿度差值为2%~6%,月最小相对湿度差值为-4%~5%,年最小相对湿度新旧站相同;新旧站月2 min平均风速差值为-0.1~0.4 m/s,月最大风速差值为-1.2~2.2 m/s,月极大风速差值为-2.0~2.8m/s,年最大风速新站与旧站基本相同,年极大风速新站比旧站明显偏大;年风向频率新站小于旧站,年最多风向新站为S,旧站为SSW;新旧站40 cm地温月平均差值为-1.1~2.5℃,80 cm地温月平均差值为-2.4~2.1℃,160 cm地温月平均差值为-2.5~2.7℃,320 cm地温月平均差值为-1.6~1.1℃,40、160 cm深层地温年平均温度新站均高于旧站,80、320 cm深层地温年平均温度新站低于旧站。  相似文献   

10.
近52a辽宁西部地区浅层地温变化特征分析   总被引:1,自引:0,他引:1  
浅层地温是影响区域气候的环境因素之一,对浅层地温研究有利于掌握其变化规律和特征,可为区域工农业生产可持续发展服务。利用统计学方法对辽宁西部1959—2011年0~320 cm的6个层次地温变化特征进行分析。结果表明,各个层次地温年变化均具有升高趋势,但具有不同的温度倾向率,其中,0 cm温度倾向率最大,其次是320 cm,40 cm的倾向率最小;除0 cm地温历年变化突变点在1985年外,其他各层次的地温历年变化的突变点均在1987年,但各层次温变过渡区间有所差异;各层次地温季节变化随着深度的增加,最高、最低温度出现时间逐次后推,浅层地温纵向40 cm深温度低于其他任何层次,并以0 cm最高,320 cm次之,浅层地温的升高将影响植物萌芽越冬及根系生长,影响土壤生物繁殖和分布。研究结果可为辽西半干旱地区工农业生产、生态环境治理提供依据。  相似文献   

11.
内蒙古干草原草地浅层地温变化趋势   总被引:1,自引:0,他引:1  
内蒙古干草原地带是森林和沙漠的过渡带,属于生态脆弱带。地温的变化对于植物的生长具有重要的影响。相对于我国其它地区内蒙古草原地带地温的研究还处于初级阶段,选取内蒙古干草原地带3个国家基准气象站1965—2000年5—9月份(0、5、10、15、20、40、80 cm)浅层地温数据,分析该地区地温的变化特点。结果表明:内蒙古干草原地带5—9月份生长季0~40 cm层地温在7月份最高,80 cm层则是8月份最高。通过对0~80 cm浅层地温年际变化研究,内蒙古干草原地带在过去35 a生长季各层地温变化总体呈上升趋势,各层升温幅度分别为0.032、0.035、0.035、0.039、0.036、0.023、0.035℃/a。地温在整个观测期,按照年际变化规律大致分为平稳期和显著升温期两个阶段,所有层地温都在20世纪90年代中期开始显著上升。通过对降水、气温与地温的关系分析,显示地温的变化与二者密切相关,是影响土壤热量交换的重要气候因子。  相似文献   

12.
为了研究城市化进程对气象站旧站地温的影响,运用数理统计方法对河北省霸州市国家基本气象站新址和旧址2012年及前后5年0~320 cm地温平均值、差值进行对比分析,并对前后5年月平均地温进行了均值t检验。结果表明,迁站同期和迁站前后5年对比,两站址0~320 cm均表现为冬季和春季新址比旧址地温低,夏季和秋季新址比旧址地温高;两站址0~20 cm年平均地温日变化呈正弦曲线,40~320 cm四季日变化曲线较平缓;新址和旧址前后5年月平均地温资料大多数月份差值较小,资料连续性较好,但两站址地温差值变幅较大,且两站深层地温比地面及浅层差异显著,应订正后使用。  相似文献   

13.
利用2011—2016年冬季(12月至翌年2月)巢湖市国家基本站逐日气温、地温、日照、降水等气象资料,采用相关分析法筛选出影响地温的关键气象因子,运用MATLAB软件构建了基于BP神经网络浅层最低地温预报模型,并比较不同层模拟精度。结果表明,0~20 cm地温日变化均呈正弦曲线变化,越向深层地温变化幅度越小,位相逐层滞后。相关性分析表明,浅层最低地温与前一日的平均气温、最低气温、0~20 cm各层平均地温和最低地温成显著正相关,与前一日日照时数成显著负相关。模型模拟结果显示0、5、10、15、20 cm最低地温预报的标准误差和绝对误差逐层减小,20 cm层预报准确度明显优于0 cm层。  相似文献   

14.
以库布齐沙漠试验站2018年1—12月地温与气象数据为基础,分析库布齐沙漠地温变化特征及其影响因子。结果表明,库布齐沙漠20cm、40cm地温常年在-10~35℃之间,地温最高值在8月份;20cm地温在12月份达到最低值,40cm地温最低值滞后1个月;随着土壤深度的增加,春、夏两季地温呈现下降趋势,秋、冬两季地温呈现上升趋势;月平均地温8月份最高,20cm月平均地温在1月份最低,40cm月平均地温最低值约滞后1个月;各层地温低于0℃持续时间为3个月左右;20cm各季节地温大致呈正弦变化,40cm地温近似一条直线;夏季地温数值在白天接近,春、秋、冬季地温数值在夜晚相近;各季节地温最高值在00∶00—03∶00之间,地温最低值在12∶00—18∶00之间;空气温度与地温相关性最为显著,其次为二氧化碳浓度,降雨直接导致地温显著下降,光照强度、空气湿度和风速对地温的影响较小。  相似文献   

15.
关于气温变化特征已有大量研究,但是关于地温变化及其与气温的关系研究还较少.以亚热带湿润地区的广西桂林气象站为研究对象,分析了1961-2010年桂林气温和0-80 cm各层地温的年代和季节变化趋势、地气温差变化、气候突变和异常年份以及气温和地温关系.结果表明:气温与各层地温有很好的相关性.各年、季平均气温和各层平均地温大部分呈显著的升高趋势,但气温和地温的增温速率不一致,即升温存在非对称性;年均气温低于各层地温1.3-2.1℃,气温的增温速率和增温幅度分别为0.184℃/10 a和0.8℃,高于除0 cm外其它各层地温的变化;气温、5-40 cm地温在冬季的增温最多,0 em和80cm地温分别在秋季和夏季的增温最多;春、夏季,随着土壤深度的增加,地温呈减小趋势,春季气温小于0-15 em而大于20-80 cm地温,夏季气温小于0-40 cm而大于80 em地温;秋、冬季,随着土壤深度的增加,地温呈增加趋势,秋、冬季气温小于各层地温;气候变暖背景下,年平均、四季气温比除0 em外其它各层地温的响应更快.近50年来,各层地温和气温的温差减小了0.1-0.4℃(0 em地温和气温温差除外),这主要是因为气温的增加幅度要大于地温,且随着土壤深度的增加,地气温差的减小幅度加大.桂林年均地温和四季气温、地温大多无气候突变现象,仅有年均气温和夏季80 em地温分别在1997和1977年出现气候突变.春季气温和5-80 cm各层地温的异常偏低年较一致;秋季气温和40、80 cm地温的异常偏低年相同;夏、冬季气温和地温的异常年份对应性较差;而年均气温和各层地温的异常偏高年较一致.  相似文献   

16.
本研究利用2018—2019年科尔沁左翼后旗沙地土壤温度资料,将不同深度土壤温度依照土壤的表土层、心土层以及底土层划分为浅层(0、5、10 cm)、中层(15、20、40 cm)、深层(80、160、320 cm)3个层次,对比分析得出科尔沁沙地土壤温度的时间动态特征,为综合评估土壤温度的环境效应提供理论基础。结果表明,科尔沁沙地土壤温度有明显的日变化、季节变化和年变化特征,其三者都有一个最高温度和最低温度出现,并且因深度的增加各层土壤最高温度和最低温度出现的时间不一致,热量传输的方向也会发生变化。  相似文献   

17.
张亚哲  高业新  汪丽芳  张冰  冯欣 《安徽农业科学》2012,40(32):15678-15679
地下水工程与试验基地是国土资源部野外科学观测研究基地,其自动气象站采集小区域的气象数据。选取2007~2011年自动观测地温资料进行统计分析,结果表明浅层地温具有明显的日变化,深层地温变化则不明显;0~320 cm整层地温均具有明显的月变化,各层次最高(低)值的出现时间均随土壤深度的递增而推迟;夏季与冬季、春季与秋季地温垂直分布呈现完全相反的变化趋势。  相似文献   

18.
《安徽农业科学》2020,(4):212-216
为了全面分析天水55年来各深层地温的气候变化特征,利用天水国家气象观测站1964—2018年0.8、1.6、3.2 m逐月平均地温资料,对其变化规律进行研究。结果表明,1964—2018年天水各深层地温呈显著的上升趋势,其升温幅度为0.398~0.426℃/10 a。0.8、1.6 m深层地温最大值出现在夏季,最小值出现在冬季;3.2 m深层地温最大值出现在秋季,最小值出现在春季。春、秋两季1.6 m土层平均地温的变化最活跃;夏、冬两季各层地温的变化特点正好相反,夏季深层平均地温随深度增加而降低,冬季则相反。气温和浅层地温与深层平均地温的年变化趋势呈显著正相关关系,在变化尺度上保持了高度的一致性。采用Mann-Kendall检验法检测天水各深层地温序列的突变现象发现,各深层平均地温在2001年前后均发生了突变,表明从2001年开始天水的深层平均地温进入了增高时期,以突变点2001年为界,增暖后时段的平均值比增暖前高0.37~0.52℃/10 a。  相似文献   

19.
分析内蒙古达拉特旗盐滩地紫花苜蓿返青气象条件,旨在探究气象服务过程中对紫花苜蓿返青的可预报性气象指标,为提升当地紫花苜蓿气象服务能力提供业务参考。结合2018年达拉特旗盐滩地紫花苜蓿生产田间调查数据,利用达拉特旗国家气象观测站2005—2018年间的日观测统计资料建立数据集,选择气温与地温的14个气象指标进行方差分析以及温度的动态分析。综合分析结果可知,日平均地表温度是能够较好地反映达拉特旗盐滩地紫花苜蓿返青气象条件的一个气象指标,当日平均地表温度超过且持续在0℃以上波动时,可以作为开始返青的气象预报时间点。当80 cm地温开始高于160 cm地温时,可作为紫花苜蓿返青即将进入普遍期的气象预测时间节点。当160 cm地温开始高于320 cm地温时,可作为紫花苜蓿返青即将结束并开始进入旺盛分枝期的气象预测时间节点。当日平均地表温度将要降到0℃或以下,或者降温幅度超过10℃以上时,可作为达拉特旗返青紫花苜蓿遭受冻害的气象预警指标。  相似文献   

20.
本文利用1981—2018年西藏自治区山南市泽当镇0.8、1.6、3.2 m地层的逐月平均地温观测资料,采用统计分析、线性倾向估计等方法对山南市深层地温变化特征进行分析。结果表明,1981—2018年山南市0.8~3.2 m地温的年代际变化呈逐渐上升的趋势,其中2011—2018年的各深层地温最高,而20世纪80年代各深层地温最低;0.8~3.2 m深层地温的年平均值均呈一定的增加趋势,其气候倾向率分别为0.0664、0.067 4、0.057 9℃/a。由此可见1.6 m深层地温的增加趋势最为明显,其次为0.8 m,而3.2 m深层地温的增加趋势最为缓慢;0.8~3.2 m深层地温变化趋势基本保持一致。深层地温的最低值大多出现在春季与冬季,而深层地温的最高值大多出现在夏季与秋季;地温主要影响冬小麦籽粒、茎秆比及理论产量,而且表现出一定的季节性,其中春季地温对冬小麦产量的影响最为明显,其次为冬季。相比而言,夏季与秋季地温对冬小麦产量并不会产生显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号