首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Wheat (Triticum aestivum L.) is one of the most important agricultural crops worldwide. Due to its high content of starch and unique gluten proteins, wheat grain is used for many food and non-food applications. Although grain quality is an important topic for food and feed as well as industrial processing, the consequences of future increases in atmospheric carbon dioxide (CO2) concentrations on quality parameters such as nutritional and bread-making rheological properties are still unclear. Wheat productivity increases under CO2 enrichment. Concomitantly, the chemical composition of vegetative plant parts is often changed and grain quality is altered. In particular, the decrease in grain protein concentration and changes in protein composition may have serious economic and health implications. Additionally, CO2 enrichment affects amino acid composition and the concentrations of macro- and micro-elements. However, experimental results are often inconsistent. The present review summarises the results from numerous CO2 enrichment experiments using different exposure techniques in order to quantify the potential impacts of projected atmospheric CO2 levels on wheat grain yield and on aspects of grain composition relevant to processing and human nutrition.  相似文献   

2.
Spring wheat (Triticum aestivum L. cv. Triso) was grown in a free-air CO2 enrichment (FACE) field experiment in order to gain information on CO2-induced effects on grain composition and quality at maturity. A proteome analysis was performed using two-dimensional gel electrophoresis (2-DE) and protein identification was done with mass spectrometry (MALDI-TOF MS). In elevated CO2 (526 μl l−1), an increase of 13.5% in grain yield was observed relative to 375 μl l−1 at a low level of significance (P = 0.528). Total grain protein concentration was decreased by 3.5% at a high level of statistical significance. Most importantly, a number of statistically significant changes within the grain proteome were observed, as the levels of 32 proteins were affected by elevated CO2: 16 proteins were up-regulated and 16 were down-regulated. Our experiment demonstrates that high-CO2 can markedly affect the proteome of mature wheat grain. The potential role of the proteins, changed in response to CO2 enrichment, is discussed as some may affect grain quality. For the task of selecting cultivars resistant to CO2-induced quality loss, we propose to consider the proteins affected by elevated CO2 identified in this work here.  相似文献   

3.
In order to investigate the intra-specific variation of wheat grain quality response to elevated atmospheric CO2 concentration (e[CO2]), eight wheat (Triticum aestivum L.)cultivars were grown at two CO2 concentrations ([CO2]) (current atmospheric, 389 CO2 μmol mol−1vs. e[CO2], FACE (Free-Air CO2 Enrichment), 550  ±  10% CO2 μmol mol−1), at two water levels (rain-fed vs. irrigated) and at two times of sowing (TOS1, vs. TOS2). The TOS treatment was mainly imposed to understand whether e[CO2] could modify the effects of timing of higher grain filling temperatures on grain quality. When plants were grown at TOS1, TKW (thousand kernel weight), grain test weight, hardness index, P, Ca, Na and phytate were not significantly changed under e[CO2]. On the other hand, e[CO2] increased TKW (16%), hardness index (9%), kernel diameter (6%), test weight (2%) but decreased grain protein (10%) and grain phytate (11%) at TOS2. In regard to grain Zn, Mn and Cu concentrations and some flour rheological properties, cultivar specific responses to e[CO2] were observed at both sowing times. Observed genetic variability in response to e[CO2] in terms of grain minerals and flour rheological properties could be easily incorporated into future wheat breeding programs to enable adaptation to climate change.  相似文献   

4.
We investigated wheat (Triticum aestivum) grain quality under Free Air CO2 Enrichment (FACE) of 550 ± 10% CO2 μmol mol−1. In each of two full growing seasons (2008 and 2009), two times of sowing were compared, with late sowing designed to mimic high temperature during grain filling. Grain samples were subjected to a range of physical, nutritional and rheological quality assessments. Elevated CO2 increased thousand grain weight (8%) and grain diameter (5%). Flour protein concentration was reduced by 11% at e[CO2], with the highest reduction being observed at the late time of sowing in 2009, (15%). Most of the grain mineral concentrations decreased under e[CO2] - Ca (11%), Mg (7%), P (11%) and S (7%), Fe (10%), Zn (17%), Na (19%), while total uptake of these nutrients per unit ground area increased. Rheological properties of the flour were altered by e[CO2] and bread volume reduced by 7%. Phytate concentration in grains tended to decrease (17%) at e[CO2] while grain fructan concentration remained unchanged. The data suggest that rising atmospheric [CO2] will reduce the nutritional and rheological quality of wheat grain, but at high temperature, e[CO2] effects may be moderated. Reduced phytate concentrations at e[CO2] may improve bioavailability of Fe and Zn in wheat grain.  相似文献   

5.
SUMMARY

Increasing atmospheric CO2 concentrations [CO2] have the potential to enhance growth and yield of agricultural plants. Con-comitantly plants grown under high [CO2] show significant changes of the chemical composition of their foliage and of other plant parts. Particularly, high [CO2] result in a decrease of plant nitrogen (N) concentration, which may have serious consequences for crop quality. This presentation summarizes the results of a variety of CO2 enrichment studies with pasture plants (Lolium spp., Trifolium repens) and cereal species (Triticum aestivum, Hordeum vulgare) which were conducted at our laboratory under different growth and CO2 exposure conditions ranging from controlled environment studies to investigations under free air carbon dioxide enrichment (FACE). With the exception of clover in all experiments a CO2-induced decline of forage and grain N concentration was observed. The magnitude of this reduction differed between species, cultivars, management conditions (N fertilization) and CO2 exposure conditions. No unambiguous evidence was obtained whether N fertilization can contribute to meet the quality requirements for cereals and grass monocultures with respect to tissue N concentrations in a future high-CO2 world. As shown in the FACE experiments current application rates of N fertilizers are inadequate to achieve quality standards.  相似文献   

6.
The impact of rising carbon dioxide concentration ([CO2]) in the atmosphere on wheat grain protein concentration and proteome was investigated in this study. Wheat genotypes (H45, SB003, SB062 and Yitpi) were grown in the Australian Grains Free-Air CO2 Enrichment (AGFACE) facility, Horsham, Victoria, Australia under ambient [CO2] (a[CO2], 391 μmol mol−1) and elevated [CO2] (e[CO2], 550 ± 20 μmol mol−1). Grain yield and grain protein concentration were measured. Global grain proteome comparison was carried out using stable isotope dimethyl labelling followed by liquid chromatography - mass spectrometry (LC-MS/MS). Grain yield was significantly increased at e[CO2], whereas protein concentration was significantly decreased and responses varied between genotypes. Proteome-wide analysis revealed that protein composition was also altered under e[CO2]. Grain protein concentration and composition of SB003 was very responsive to e[CO2]. Mainly storage proteins were decreased at e[CO2] and the responses varied between genotypes. These findings suggest that e[CO2] may have a major impact on grain protein quality and thus bread quality and human and animal nutrition. Further, these findings suggest that [CO2] insensitive cultivars can be identified for grain quality improvement under changing climate.  相似文献   

7.
Wheat (Triticum aestivum L.) grain Zn data from six open-top chamber experiments performed in south-west Sweden were combined to study the relationship between Zn accumulation and grain yield, grain protein, and yield components. Treatments included, in addition to open-top chamber controls, elevated CO2, elevated O3, combined CO2 and O3 exposure, combined elevated CO2 and supplemental irrigation, supplemental irrigation, and ambient air comparison plots. The grain Zn concentration was strongly correlated with grain protein (R2 = 0.90) over the range of the experimental treatments, representing non-soil factors. A significant yield dilution effect was found for Zn. For a 10% increase in grain yield, Zn yield was increased by 6.8% on average. Effects on Zn yield correlated strongly with effects on grain protein yield, with a slope close to unity, showing that yield dilution effects for grain Zn and grain protein were similar. Treatment effects on grain Zn concentration were related to effects on grain weight (P < 0.01) and grain number (P < 0.05), but not to harvest index. It was concluded that yield stimulation caused by rising CO2 concentrations is likely to lead to reduced Zn concentrations of wheat grain, thus reducing the nutritional quality.  相似文献   

8.
Spring wheat (Triticum aestivum L.) was grown in a free-air carbon dioxide (CO2) enrichment (FACE) field experiment. Grain and biomass yield and its components were determined at maturity and the grain metabolome was analysed by gas chromatography-mass spectrometry (GC–MS). Elevated CO2 (537 versus 409 μl l−1) increased biomass production except for leaves. In total, levels of 16 grain metabolites were decreased and four were increased. CO2 enrichment resulted in significant decreases of amino acids such as o-acetyl-L-homoserine, leucine, arginine, L-homoserine and the group of ornithine, arginine and citrulline and negative trends for norleucine, L-aspartate, proline, L-cysteine and tyrosine. The amines D/L-diaminopimelate and alpha-ketoaminobutyrate and the polyamine putrescine were significantly decreased. In contrast, the polyamine spermidine tended to increase under elevated CO2. Among sugars and sugar derivatives, ribose-5-P was significantly increased, while gluconate-6-P was decreased. There were also negative CO2-induced effects on sugar alcohols: significant for glycerol-2-P (P = 0.008) and almost significant for myo-inositol-P (P = 0.066). In contrast, organic acids such as pyruvate and glucuronic acid were significantly increased. Overall, the N-rich metabolites especially were reduced. CO2 enrichment can markedly affect the physiology and metabolome of mature grains which may in turn lead to changes in nutritional status.  相似文献   

9.
We investigated wheat (Triticum aestivum) grain quality under Free Air CO2 Enrichment (FACE) of 550 ± 10% CO2 μmol mol−1. In each of two full growing seasons (2008 and 2009), two times of sowing were compared, with late sowing designed to mimic high temperature during grain filling. Grain samples were subjected to a range of physical, nutritional and rheological quality assessments. Elevated CO2 increased thousand grain weight (8%) and grain diameter (5%). Flour protein concentration was reduced by 11% at e[CO2], with the highest reduction being observed at the late time of sowing in 2009, (15%). Most of the grain mineral concentrations decreased under e[CO2] - Ca (11%), Mg (7%), P (11%) and S (7%), Fe (10%), Zn (17%), Na (19%), while total uptake of these nutrients per unit ground area increased. Rheological properties of the flour were altered by e[CO2] and bread volume reduced by 7%. Phytate concentration in grains tended to decrease (17%) at e[CO2] while grain fructan concentration remained unchanged. The data suggest that rising atmospheric [CO2] will reduce the nutritional and rheological quality of wheat grain, but at high temperature, e[CO2] effects may be moderated. Reduced phytate concentrations at e[CO2] may improve bioavailability of Fe and Zn in wheat grain.  相似文献   

10.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate growth of C3 crops. Although barley is one of the important cereals of the world, little information exists about the effect of elevated [CO2] on grain yield of this crop, and realistic data from field experiments are lacking. Therefore, winter barley was grown within a crop rotation over two rotation cycles (2000 and 2003) at present and elevated [CO2](375 ppm and 550 ppm) and at two levels of nitrogen supply (adequate (N2): 262 kg ha−1 in 1st year and 179 kg ha−1 in 2nd year) and 50% of adequate (N1)). The experiments were carried out in a free air CO2 enrichment (FACE) system in Braunschweig, Germany. The reduction in nitrogen supply decreased seasonal radiation absorption of the green canopy under ambient [CO2] by 23%, while CO2 enrichment had a positive effect under low nitrogen (+8%). Radiation use efficiency was increased by CO2 elevation under both N levels (+12%). The CO2 effect on final above ground biomass was similar for both nitrogen treatments (N1: +16%; N2: +13%). CO2 enrichment did not affect leaf biomass, but increased ear and stem biomass. In addition, final stem dry weight was higher under low (+27%) than under high nitrogen (+13%). Similar findings were obtained for the amount of stem reserves available during grain filling. Relative CO2 response of grain yield was independent of nitrogen supply (N1: +13%; N2: +12%). The positive CO2 effect on grain yield was primarily due to a higher grain number, while changes of individual grain weight were small. This corresponds to the findings that under low nitrogen grain growth was unaffected by CO2 and that under adequate nitrogen the positive effect on grain filling rate was counterbalanced by shortening of grain filling duration.  相似文献   

11.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

12.
为给春小麦养分科学管理提供参考,采用大田小区试验,以春小麦品种龙麦26和克旱16为材料,研究了肥料施用量对小麦不同密度群体籽粒产量与品质形成的调控效应。结果表明,施肥与群体密度对春小麦产量具有明显的互作效应。低施肥水平下,春小麦产量随群体密度的增加而增加;中高施肥水平下,产量随群体密度增加出现波动,但均高于低施肥水平的产量。群体密度的增加降低了收获穗数饱和度、穗粒数及籽粒面筋含量,但增加了籽粒容重;施肥量的增加提高了穗粒数、千粒重和面筋含量;群体密度和施肥量对小麦加工品质的影响较为复杂,且对不同基因型品种的调控效应不同。  相似文献   

13.
Abstract

Wheat provides nutrients and the raw materials for industrialized food production. Recent global economic trends and increases in urban population growth have led to an increased demand for wheat-based convenience foods (fast, ready-to-eat, frozen foods, etc.) and for new wheat-based products. These factors have resulted in a greater emphasis than ever on the end-use quality of wheat. This paper reviews grain compositional aspects influencing the processing and quality attributes of the main foods produced with wheat, as well as the breeding strategies and methodologies used to achieve germplasm with desirable end-use quality. Common wheat (Triticum aestivum) is used in bread (leavened, flat, and steamed), noodles, biscuits, and cakes. Durum wheat (T. turgidum L. var. durum) is used globally in alimentary pasta and regional foods (flat breads, couscous, and burghoul) in North Africa and West Asia. Grain characteristics (grain hardness, protein content/quality, enzymatic activity, etc.) play a moderate to important role in the processing and end-use quality of wheat-based products. Among these, gluten strength and extensibility, which are determined by glutenin (HMW and LMW) and gliadin composition, are two of the main factors that determine quality. The complex and generally additive nature of inheritance of most quality traits has led to the development of several indirect tests used in early and advanced generations to increase the frequency of high yielding lines with desirable quality attributes. Additionally, characterization of HMW and LMW glutenins and gliadins allows breeders to combine protein content and quality more effectively. The use of molecular-marker-assisted selection and genetic transformation is expected to accelerate the tailoring of new wheat varieties to meet specific end-use quality requirements. Accumulating desirable quality genes will help reduce genotype X environment effects on quality-presently among the major challenges confronting breeders.  相似文献   

14.
We test the hypothesis that reduction in grain N concentration under elevated CO2 concentration (e[CO2]) is associated with N types (NH4+ and NO3) and their ratios. Wheat (Triticum aestivum L. cv. H45) was grown in a glasshouse under two CO2 concentrations (389 μmol mol−1 and 700 μmol mol−1), supplied with equal amount of N with different ratios of NH4+ and NO3: (i) 100% NO3–N; (ii) 50% NO3–N and 50% NH4+–N; and (iii) 25% NO3–N and 75% NH4+–N. Plant growth, N uptake and partitioning were measured during plant development. Plant biomass and grain yield was increased at e[CO2] when N was supplied as an equal proportion of NO3 and NH4+. Despite the yield increment, grain N concentration was not affected by e[CO2], in 50% NO3–N treatment. In contrast, grain N concentration decreased in 100% NO3–N and 25% NO3–N treatments. In 50% NO3–N treatment, N uptake during post-anthesis stage (from 69 to 141 days after planting) was significantly stimulated under e[CO2] compared to 100% NO3–N and 25% NO3–N treatments. We concluded that supplement of N in an equal proportion of NO3 and NH4+ which increases post-anthesis N uptake, avoid the reduction of grain N concentration under e[CO2].  相似文献   

15.
In bread wheat, high grain protein content (GPC) determines nutritional value, processing properties and quality of the end-product. In view of this, marker-assisted selection (MAS) was performed for introgression of a major gene for high GPC (Gpc-B1) into 10 wheat genotypes. As a result, 124 BC3F5/F6 progenies with Gpc-B1 were developed and evaluated in multi-location field trials. Significant interaction of Gpc-B1 with the recipient parent genotypes and the environment was noticed. However, a total of seven MAS-derived progenies with significantly higher GPC (14.83-17.85%) than their recipient parental genotypes and having no yield penalty were obtained. In these selected progenies, no significant negative correlation of grain yield with GPC (%) or protein yield was observed suggesting that GPC could be improved without yield penalty. This study thus suggested that MAS in combination with phenotypic selection is a useful strategy for development of wheat genotypes with high GPC associated with no loss in yield.  相似文献   

16.
The present study focused on the quality traits of durum wheat grains (protein and content, gluten content, yellow pigment content), semolina (gluten index and yellow index) and pasta (firmness, yellow index, cooking time) obtained from 12 durum wheat genotypes grown under elevated atmospheric CO2 concentration in an open field Free Air CO2 Enrichment (FACE) experiment. The aims were to evaluate the impact of elevated CO2 on durum wheat pasta making related traits as well as investigate genetic differences existing in a panel of old and modern cultivars. The protein content showed a not significant decrease (7%), the GC decreased significantly (13.3%), while the GI showed an increasing significant tendency (14%). The overall pasta quality (firmness and weight) worsened in ELE. Correlation between all traits and pasta firmness demonstrated that the decrease in pasta firmness under ELE was correlated with GPC and GC while it was not with the GI. All varieties, although to different extent, showed lower pasta firmness values compared to the ambient condition. Among the varieties tested, some were more sensitive than others to the increased atmospheric CO2 concentration, a finding that can be exploited by breeding for designing novel genotypes with lower sensitivity to increased atmospheric CO2.  相似文献   

17.
Increasing global atmospheric CO2 concentrations are expected to influence crop production. To investigate the effect on rice (Oryza sativa L.), plants were grown under ambient CO2 (AMB) or free-air CO2-enrichment (FACE) at CO2 concentrations ranged from 275 to 365 μmol mol−1 above AMB. We supplied 13CO2 to the plants at different growth stages so we could examine the contribution of carbohydrate stored during the vegetative stage or newly fixed carbohydrate produced during the grain-filling stage to ear weight at grain maturity. In plants supplied with 13C at the panicle-initiation or pre-heading stages, plants grown under FACE had more starch in the stems at heading, but there was no difference in stem 13C content. Furthermore, there were no differences between treatments in whole-plant 13C contents at heading and grain maturity. In contrast, plants supplied with 13C at the grain-filling stage had more 13C in the whole plant and the ears at grain maturity under FACE than under AMB, indicating that the increased amount of photosynthate produced at the grain-filling stage under CO2 enrichment might be effectively stored in the grains. Furthermore, regardless of when the 13C was supplied, plants had more 13C in starch in the ears at grain maturity under FACE than under AMB. Therefore, CO2 enrichment appears to promote partitioning of photosynthate produced during both vegetative and grain-filling stages to the grains.  相似文献   

18.
为给沼液在小麦优质高产栽培中的科学施用提供理论依据,在大田高产条件下研究了沼液追施量对小麦主要品质性状的影响。结果表明,适宜的沼液追施量能有效地提高小麦淀粉黏度参数和蛋白质及其组分含量,改善面团流变学特性。淀粉糊化特性、蛋白质组分含量和粉质参数均以60~120 kg·hm-2沼液氮追施量最为适宜,而拉伸参数的沼液氮优化水平相对较高(180 kg·hm-2),沼液追施量不足或过多均不利于籽粒品质参数的改善。因此,在基施酰氨态氮120 kg·hm-2的基础上,追施120 kg·hm-2沼液氮最为适宜,品质指标协调,营养价值高,品质综合性状好。  相似文献   

19.
为研究不同行距配置对小麦籽粒发育及淀粉和蛋白质积累的影响,以4个高产冬小麦品种为材料,在河南浚县农业科学研究所超高产攻关田研究了不同行距配置下小麦籽粒灌浆特性及淀粉、蛋白质的积累动态.结果表明,高产小麦籽粒中可溶性糖含量下降与淀粉含量的增加趋势基本吻合,宽窄行种植模式(S1)籽粒中可溶性糖含量较高,且转化利用较快,促进了籽粒淀粉积累.从行距配置看.周麦22籽粒蛋白质含量以等行距种植模式(S2)较高,偃展4110和矮抗58均以S1较高,而豫麦49-198在两种种植模式下无明显差异.籽粒灌浆速率、千粒重和产量则表现为豫麦49-198、周麦22和矮抗58均以S较高,而偃展4110以S2较高.灌浆模型分析表明,灌浆持续天数和最大灌浆速率出现时间是行距配置影响粒重的主要因素.  相似文献   

20.
为了解河北省主推强筋小麦品种的籽粒品质和面包加工品质,评选优质面包小麦品种,对河北省9个强筋小麦品种的31个籽粒品质和8个面包加工品质指标进行了测定。结果表明,除千粒重、容重、籽粒硬度、出粉率、面粉色泽L*值、面粉色泽b*值、面粉白度、籽粒蛋白质含量、湿面筋含量、糊化温度、吸水率外,其余被测指标的变异系数均大于10%,说明河北省强筋小麦品种多数品质性状的遗传多样性比较丰富。藁优9415、冀师02-1、藁优2018和金麦1号4个小麦品种制作的面包达到国家优质面包标准。面包评分与面团拉伸曲线面积和最大拉伸阻力极显著正相关,与形成时间、稳定时间、粉质质量指数、延伸度和拉伸阻力显著正相关,与面包质构的粘聚性极显著正相关,与面包质构的硬度、胶着性、咀嚼度、坚实度均极显著负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号