首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Degenerate primers designed based on known resistant genes (R-genes) and resistance gene analogs (RGAs) were used in combinations to elucidate RGAs from Sorghum bicolor, cultivar M 35-1. Most of the previously tried primer combinations resulted in amplicons of expected 500–600 bp sizes in sorghum along with few novel combinations. Restriction analysis of PCR amplicons of expected size revealed a group of fragments present in a single band indicating the heterogeneous nature of the amplicon. Many of these were cloned and some were considered for analysis. The nucleotide sequence of different cloned fragments was done and their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. A cluster analysis based on neighbor-joining (N-J) method was carried out using sorghum RGAs (SRGAs) together with several analogous known R-genes resulting in two major groups; cluster-I comprising only SRGAs and cluster-II comprised of known R-gene sequences along with three SRGAs. Further analysis clearly indicated similarity of SRGAs in overall sense with already known ones from other crop plants. These sequences can be used as guidelines to detect, map and eventually isolate numerous R-genes in sorghum.  相似文献   

2.
Cultivating resistant varieties of potato is the most effective and environmentally sound method of protecting potato crops against pests and diseases. Potato cyst nematodes (PCN) are major nematode pests causing severe constraints in potato production worldwide. There are five pathotypes of Globodrea rostochiensis (Ro1–Ro5) and three of G. pallida Pa1–Pa3. Cultivation of potato varieties with broad nematode resistance may influence the growth of the wide spectrum of PCN pathotypes, but there is limited availability of such varieties on the market. The use of molecular markers allows for the effective selection of resistant genotypes at early stages of breeding. However, the impact of early selection for nematode resistance on the agronomic value of the final selected clones is a cause of concern for potato breeders. This study investigates the relationships between the presence of the combined resistance genes H1, Gro1-4 and GpaVvrn, which confer resistance to the nematodes, and certain agricultural traits. Clones with broad nematode resistance conferred by the genes H1, Gro1-4 and GpaVvrn presented yields and tuber morphology traits similar to those of the clones without identified resistance genes.  相似文献   

3.
Summary Accession No. 1 of Aegilops variabilis has complete resistance to the root knot nematode, Meloidogyne naasi. F2 segregation in a cross between this and two susceptible accessions showed that one dominant gene named Rkn-mn1 prevented development of galls on the roots and consequently of female nematodes. The study of the numbers of females in galls on the F2 plants allowed detection of a recessive gene, Rkn-mnAv, suppressing development of J2 larvae into females. The presence of Rkn-mnAv also resulted in a decrease of the level of galling. Rkn-mn1 has already been introduced into wheat. The interest in transferring also Rkn-mnAv is discussed in relation to extending durability of the nematode resistance.  相似文献   

4.
Bananas cultivated for export all belong to Cavendish cultivars and are all recognized as very susceptible to nematodes, particularly to the burrowing nematode Radopholus similis and the lesion nematode Pratylenchus coffeae. Even if there have been many changes in the management of banana nematodes in large commercial banana plantations, chemical control still remains most often the last resort method to manage the nematodes, although the number of registered products is definitely declining. Therefore, nematode control though genetic improvement is gaining new interest worldwide. In this study, 55 banana accessions mostly diploids from the Musa acuminata genome group (AA) but including some triploid accessions (AAA), some diploids of the Musa balbisiana genome group (BB) and some interspecific hybrids (AAB, AB) were evaluated for resistance to four nematode species R. similis, P. coffeae, Meloidogyne incognita and M. arenaria. These experiments were conducted in a growth chamber under controlled conditions. All banana accessions were susceptible to nematode species, although many different levels of susceptibility were detected. This study confirmed the good resistance status to R. similis of some cultivars from the Pisang jari buaya and Pisang batuau subgroups and the partial resistance of 17 diploid accessions significantly different from the susceptible reference cv. Grande Naine. This study also showed that 12 diploid accessions exhibited a partial resistance to P. coffeae, including some usual or potential genitors belonging to the wild diploids subspecies burmannica (cvs. Long Tavoy 1 and 2) and burmannicoides (cv. Calcutta 4). No source of resistance to Meloidogyne spp. was found. These screening results, combining for the first time four nematode species, are discussed within the scope of banana breeding in order to produce parental diploid lines with single or combined nematode resistances and further develop triploids that can substitute existing susceptible commercial cultivars.  相似文献   

5.
Summary Cultivar Peking has been extensively used as a source of resistance to Race 3 and Race 5 of soybean cyst nematode, Heterodera glycines I., and Peking genes for resistance are present in a wide range of resistant soybean cultivars. Peking is also used as a host differential in the soybean cyst nematode race classification system. Thirteen Peking lines maintained in the USDA Soybean Germplasm Collection and in several breeding programs were surveyed using RFLP and RAPD markers for genetic characterization. Based on the molecular diversity combined with reaction to soybean cyst nematode, Peking genotypes from a common original source were identified. Peking lines PI 297543 (introduction from Hungary), and PI 438496A, PI 438496B and PI 438496C (introductions from Russia) represented unrelated germplasms. Identified molecular polymorphism can be used to validate the genetic purity of Peking lines used as host differentials for soybean cyst nematode classification system as well as utilization of an individual germplasm line in genetic-breeding programs.  相似文献   

6.
Yu  M. H. 《Euphytica》1984,33(3):633-640
Summary Fifty-two accessions of the section Patellares wild beet (including 26 Beta patellaris Moq., 13 B. procumbens Chr. Sm and 13 B. webbiana Moq.) and 14 progeny families were selected and tested against sugarbeet cyst nematode, Heterodera schachtii Schm. All Patellares species tested were highly resistant, but not immune, to the development of H. schachtii, after infection. This is the first report that mature female nematodes developed in the roots of B. webbiana plants. The occasional development of nematode cysts in roots of juvenile wild beets was, however, not a heritable genetic factor.Mention of a trademark, vendor, or proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

7.
番茄叶霉菌无毒基因的研究进展   总被引:1,自引:0,他引:1  
无毒基因是病原物遗传因子,其编码的产物激发病原物与植物特异性相互作用。病原物无毒基因与植物抗病基因产物间直接或间接相互作用导致产生的基因对基因抗性是植物抗病性的重要形式。番茄与叶霉病之间的特异互作被认为是遵循Flor的“基因对基因”假说的典型体系。绝大多数已克隆的无毒基因之间,及其与已知蛋白之间,均无显著的序列同源性。无毒基因具有双重功能:在含瓦补抗性基因植物中表现无毒效应,而在不含互补抗性基因植物中显示毒性效应。本文综述了番茄叶霉菌无毒基因的多样性、意义、结构及其功能等等,了解病原菌无毒基因的结构及功能,有助于了解病原物与植物的识别机制,对认识植物的抗病性,特别是非寄主植物对病原菌的广谱抗病性也具有重要意义。  相似文献   

8.
Plant resistance is currently the most effective and environmentally safe method to control plant parasitic nematodes (PPNs). Resistance genes generally act against sedentary PPNs by inducing a hypersensitive reaction that prevents the parasite installation and/or reproduction. However, the recent emergence of virulent biotypes able to overcome the plant resistance genes may constitute a severe limitation to this control strategy. In selection experiments conducted under controled environment, the genetic variation, specificity and inheritance of nematode virulence have been demonstrated. Moreover, the occurrence of gene-for-gene interactions has been shown in a few cases. Moleculars markers have been extensively used to investigate the genetic variability of PPNs, but so far, the genomic polymorphisms observed are largely independent of virulence. Such data suggest that, within a species, virulent isolates do not share a common origin, but are probably the result of independent mutational events. To understand the molecular mechanisms responsible for virulence in PPNs, several strategies have been developed, in relation with their mode of reproduction (parthenogenesis versus amphimixis). As an example, recent results obtained in our laboratory on the root-knot nematodes Meloidogyne spp. are presented. On a more general point of view, factors that may induce stable genome variability in PPNs, e.g. Transposition of mobile elements and chromosomal rearrangements (leading to polyploidy, aneuploidy, etc) will also be considered. Advances in knowledge in these areas should have important consequences for the management and durability of natural resistance genes, and for the engineering of new forms of resistance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
中国大豆孢囊线虫抗性研究进展   总被引:6,自引:0,他引:6  
中国是大豆的故乡,曾经是世界上最主要的大豆生产国和出口国。如今,中国的大豆生产量已从世界首位降到美国、巴西之后,由大豆出口国变为大豆进口国,其主要的原因之一是中国大豆生产未能有效的控制大豆孢囊线虫的危害,以致中国大豆平均单产处于较低水平。大豆孢囊线虫(Soybean Cyst Nematode,简称SCN)是一种土传的定居性内寄生线虫,大豆孢囊线虫的二龄幼虫从根尖处侵入根部,造成根组织的代谢失调与组织损伤,受害的大豆根系短粗,植株矮小,叶片变黄,产量严重降低。SCN的特点是分布广、危害重、寄主范围宽、传播途径多,存活时间长,防治极难。SCN危害已遍及中国大豆主要生产区,主要分布在我国的东北大豆主产区的黑龙江、吉林、辽宁、内蒙古及黄淮海大豆主产区的山东、河北、山西、安徽、河南、北京等省市,每年SCN发生面积达150万hm^2以上。本文综述了近年来我国在大豆孢囊线虫研究方面取得的进展,主要包括以下几个方面:SCN生理小种的研究、SCN抗性资源发掘、SCN经典遗传及分子遗传学研究及SCN抗性育种等研究进展。  相似文献   

10.
Summary The standard root-ball test for assessing quantitative resistance of Globodera pallida in host material derived from Solanum vernei has produced variable results. This study of two sets of clones shows that genotype x environment interactions are responsible and that linear regressions (b) of phenotypic means on environments may enable good predictions to be made of the effects of the interactions. A relationship between the regression value (b) and phenotypic mean is shown for this material. The implication of this for a screening procedure in a potato breeding programme aimed at increasing potato cyst nematode resistance in adapted cultivars of S. tuberosum is discussed.  相似文献   

11.
A phenotypically and geographically diverse collection of 45 Arabidopsis thaliana ecotypes was evaluated for its reaction to the northern root-knot nematode (Meloidogyne hapla) under greenhouse conditions. A significant ecotype effect was observed for both criteria used for host reaction assessment: namely, root-gall rating (RGR) and nematode reproductive index (RI). A non-host (non-galling) response was not detected in this germplasm collection. The majority of the ecotypes showed high degrees of RGR and RI. However, some medium-late maturing ecotypes such as ‘CS-1540’ and ‘CS-6028’(both collected in the UK) displayed high RGR but in association with very reduced RI. The confirmation of A. thaliana as an experimental host of M. hapla and the identification of differential levels of response to infection by this endoparasitic nematode provides the opportunity for genetic and molecular characterization of a new set of plant genes expressed during plant-nematode interaction. A. thaliana is the smallest and the best characterized genome among plant species, which may facilitate gene isolation and cloning. This may hasten transgenic transfer to economically important host plants of the genetic factors controlling low RI levels identified in some A. thaliana ecotypes.  相似文献   

12.
The F2 progeny of a third backcross(BC3) line, BC line 240, derived from a Turkish accession of wild barley (Hordeum vulgare ssp. spontaneum),segregated for resistance to scald (Rhynchosporium secalis) in a manner indicating the presence of a single dominant resistance gene. Two SCAR marker slinked to this resistance were developed from AFLP markers. Screens of disomic and ditelosomic wheat-barley addition lines with the SCAR markers demonstrated that the scald resistance gene is located in the centromeric region of barley chromosome 3H,a region previously reported to contain a major scald resistance locus, Rrs1. Markers that flank the Rrs1 locus were used to screen the wild barley-derivedBC3F2 population. These markers also flank the wild barley-derived scald resistance, indicating that it maps to the same locus as Rrs1; it may beallelic, or a separate gene within a complex locus. However, BC line 240 does not respond to treatment with the Rhynchosporium secalis avirulence factorNIP1 in the same way as the Rrs1-carrying cultivar Atlas46. This suggests that the scald resistance gene derived from wild barley confers a different specificity of response to theRrs1 allele in Atlas46.In order to increase the durability of scald resistance in the field, we suggest that at least two scald resistances should be combined into barley cultivars before release. The scald resistance gene described here will be of value in the Australian environment, and the several markers linked to it will facilitate pyramiding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Richard N. Strange 《Euphytica》2006,147(1-2):49-65
Summary Grain legumes, in common with all other plants, are subject to biotic constraints of which pathogens form an important group. They are variable in type, number, space and time and, most insidiously, in genetic constitution. Consequently, resistance in the plant to a given pathogen may be quickly nullified by genetic alteration of the pathogen, particularly where this is conferred by a single resistance gene. The products of such resistance genes usually recognise, directly or indirectly, a component of the pathogen, which is encoded by a corresponding avirulence gene. Thus resistance and avirulence genes are specific and complementary and the arrangement is referred to as a gene-for-gene relationship. It follows that alteration of the avirulence gene of the pathogen to give a product that is no longer recognised by the product of the resistance gene of the plant gives rise to a susceptible reaction. A possible solution to this problem is to pyramid several resistance genes, a procedure now facilitated by the techniques of genetic modification. In other interactions genes that reduce susceptibility rather than confer complete resistance have been found and in some cases the loci (quantitative trait loci) responsible have been mapped to specific regions of particular chromosomes. The mechanisms by which these genes limit the virulence of the pathogen are generally unknown. However, by gaining an understanding of the fundamental properties of a pathogen that are necessary for pathogenicity or virulence it may be possible to counteract them. Candidates for such properties are toxins, enzymes and mechanisms that interfere with constitutive or active defence of the plant. Reciprocally, understanding the properties of the plant that confer susceptibility may allow selection of germplasm that lacks such properties. Among the candidates here are germination stimulants of pathogen propagules and signals that promote the formation of infection structures.  相似文献   

14.
斑茅cDNA中抗病基因同源序列的分离和表达特性分析   总被引:2,自引:0,他引:2  
植物抗病基因具有一些特定的保守结构域。本研究根据已知植物同源抗病基因(RGAs)保守序列设计简并引物, 从甘蔗近缘植物斑茅的cDNA中扩增出6条抗病基因同源序列, 它们在NCBI上登录号分别为EU685835、EU685836、EU685837、EU685838、EU685839 和 EU685840。序列分析表明, 这些RGAs均含有典型的NBS-LRR类抗病基因保守结构域P-loop、Kinase-2a、Kinase-3a和疏水结构域(Hydrophobic domain, HD)。氨基酸序列的同源性比对表明,6条RGAs序列同11条参试的抗病基因之间的同源性为8.3%~93%,而6条RGAs之间的氨基酸序列同源为30.5%~45.6%。另外,本实验所克隆的6条斑茅抗病基因同源序列中, kinase-2 (LLVLDDVW/D)最后一个氨基酸皆为色氨酸,推测所克隆的NBS-LRR类抗病基因都属于non-TIR-NBS-LRR类。定量PCR分析表明, 6条斑茅抗病基因同源序列在根、茎和叶片中组成型表达,同时这些抗病基因同源序列的表达会受外源信号分子水杨酸和过氧化氢的上调作用,可能在斑茅的抗病性中具有一定的作用。  相似文献   

15.
J.R. Witcombe  C.T. Hash 《Euphytica》2000,112(2):175-186
Marker-assisted selection (MAS) for resistance genes (R-genes), identified using molecular markers and quantitative trait loci (QTL) analysis, is now possible in many crops. MAS can be used to pyramid several R-genes into a single host genotype. However, this may not provide durable genetic resistance because the pathogen is exposed to a full homozygous pyramid during hybrid seed production and to a full heterozygous pyramid in the resultant hybrid. Alternative gene deployment strategies that generate genetic variability were analysed, for hybrid cereal cultivars of pearl millet, maize, sorghum and rice, using maintainer lines (B-lines) with two smaller complementary pyramids. An F1 seed parent, produced on two such B-lines, can be used to produce a three-way hybrid. All target loci are heterozygous for resistance alleles in the F1 seed parent, and the pathogen is exposed in the hybrid to a host population that is heterogeneous and heterozygous for alleles at the resistance loci targeted by MAS. Alternatively, single-cross hybrids can be made on seed parents that are maintained by two B-lines that differ for the complementary resistance gene pyramids. In a cross-pollinated crop, the B-lines are allowed to intermate to produce a synthetic B-line. In an inbreeding crop, the B-lines are equivalent to a two-component multiline variety. In inbreeding crops, because there is no intermating between the B-line components, the resultant synthetic seed parents have a higher frequency of genotypes with resistance alleles (R-alleles) at several resistance loci. However, in both cross-pollinated and inbreeding crops the genotypic structure in the hybrids is almost the same. All alternatives to a single-cross hybrid having a full pyramid produce hybrid cultivars having lower frequencies of resistance alleles. The frequency of genotypes having R-alleles at several loci increases greatly in both seed parent and hybrid when the overall frequency of R-alleles in the maintainer lines increases. This is simply done by adding a maintainer line that has a full pyramid or by the component lines having overlapping pyramids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Root‐knot nematode disease, caused by Meloidogyne species, is an important soil‐borne disease of peach (Prunus persica L.) worldwide. To identify a major locus of genetic resistance to M. incognita, PkMi, in a wild peach species, we reconstructed a linkage group in a BC1 population of 187 lines using resistance gene analogue markers surrounding the PkMi locus. A resistance gene analogue marker, ppa021062m, co‐segregated with the PkMi locus and was therefore considered a strong candidate for PkMi. Phylogenetic analysis of the deduced protein sequences of ppa021062m, together with the other seven genes for nematode resistance, allowed ppa021062m to be assigned to the Toll/Interleukin1 Receptor‐Nucleotide Binding Site‐Leucine Rich Repeat class, similar to Ma in myrobalan plum (P. cerasifera). Comparative analysis of the candidate gene sequence in four genotypes that had different levels of resistance to root‐knot nematode disease showed that most non‐synonymous SNPs in the genic region were distributed in the TIR and NBS motifs. This study enhances our understanding of the genetic and molecular control of resistance to root‐knot nematode disease in peach.  相似文献   

17.
使用与无毒基因Avr-pit、Avr-pia、PRE1紧密连锁的3个SSR标记对黑龙江省不同地区的195个稻瘟菌菌株的DNA进行PCR扩增。结果表明,各无毒基因在黑龙江省的出现频率有明显差异,无毒基因Avr-pit的出现频率为43.59%,无毒基因Avr-pia出现频率36.92%,无毒基因PRE1的出现频率为30.26%。黑龙江省稻瘟病菌的群体结构复杂,在不同地区甚至相同地区的菌株中无毒基因的存在情况都有明显的差异。  相似文献   

18.
Root‐knot nematodes, Meloidogyne spp., cause severe damage on solanaceous crops, including tomato and pepper. The objective of this study was to test whether nematodes virulent against the tomato Mi resistance gene were able to overcome the Me1 and Me3 resistance genes from pepper. For that purpose, a collection of 22 Meloidogyne arenaria, Meloidogyne incognita and Meloidogyne javanica isolates, avirulent or virulent against the Mi gene, was assembled. The reproduction of each isolate was evaluated on both susceptible and resistant tomato and pepper genotypes in a growth chamber. The Me1 resistance gene controlled all the avirulent and Mi‐virulent nematodes tested, and therefore appears promising for pepper breeding. In contrast, one M. arenaria and two M. incognita virulent isolates were shown to overcome the pepper Me3 resistance gene. These results encourage the testing of a large number of Meloidogyne isolates to evaluate the plant‐nematode interaction, which could have important consequences for the use and management of resistance genes in the field with respect to specificity and durability of the resistance.  相似文献   

19.
Summary Within the two potato cyst nematode (PCN) species, Globodera rostochiensis and G. pallida, eight pathotypes are presently discerned by seven differential Solanum clones, whereby resistance is defined as a Pf/Pi ratio <1.0, and susceptibility as a ratio above 1.0. This pathotyping is felt to be unsatisfactory. Reconsidering the original data and data published by others resulted in the conclusion that there are only three reliably recognizable Ro-pathotypes Ro1/Ro4, Ro2/Ro3 and Ro5. The differential clones 60.21.19 and 65.346.19 differentiate only between the two species. Within G. pallida it does not seem possible to identify pathotypes reliably. The resistance-virulence pattern is of a quantitative nature fitting a polygenic system. There appear to be pathotype-specific effects, which are not large enough to identify and classify pathotypes reliably. It is therefore suggested to rename the Ro-pathotypes into Ro1 (old Ro1 and Ro4), Ro3 (old Ro2 and Ro3) and Ro5 (old Ro5) and to speak of more and less virulent Pa-populations.The rigorous requirements for resistance in various countries present great problems to the breeders and result in the removal of much valuable partial resistance. Especially with G. pallida these rigorous requirements are probably an obstacle rather than an encouragement to solve the pallida problem.  相似文献   

20.
Present status of genetics of rust resistance in flax   总被引:5,自引:0,他引:5  
Summary Present knowledge of host genes conferring resistance to rust in flax and their genetics are reviewed. There are at least 34 genes conferring resistance to rust occurring in seven groups, namely, K, L, M, N, P, D and Q. Expression of these host genes is affected by temperature, genetic background and by the inhibitor gene present in certain rust strains. Recombination analysis indicates that genes within each of the M and N groups are probably closely linked and that of the L group are genetically complex. When testcross progeny between two genes of the L group were screened, susceptible and modified recombinants were recovered. Some of these susceptible recombinants yielded rare resistant revertants in their progeny. Mechanism of such reversion is not defined but appears to follow a definite pattern. It is also indicated that some of the recombinants represent new specificity. A molecular approach of cloning host genes in flax is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号