首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
以椰壳活性炭生产过程中产生的粉末碎炭为原料,羧甲基纤维素钠为黏结剂,无机助剂硅酸盐为增黏剂,按一定质量比混炼、挤条、成型,再经过热处理制得耐水高强度柱状颗粒活性炭。试验考察了助剂添加量、热处理温度、热处理时间等因素对产品炭的碘吸附值、亚甲基蓝吸附值和耐磨强度的影响。随着硅酸盐添加量的增加,颗粒活性炭的耐磨强度呈增大趋势;随热处理温度的升高,颗粒活性炭的碘吸附值和亚甲基蓝吸附值不断增加。但另一方面,随热处理时间的延长,耐磨强度呈逐渐下降趋势。利用红外分析仪、综合热分析仪和全自动比表面积与孔隙分布分析仪对颗粒活性炭进行分析。在羧甲基纤维素钠用量2%、助剂添加量20%、热处理温度350℃、热处理时间0.5 h条件下,制备出的颗粒活性炭碘吸附值、亚甲基蓝吸附值和耐磨强度分别为815.37mg/g,163.50 mg/g和99.72%,并且具有良好的耐水能力。  相似文献   

2.
以竹热解气化产生的炭副产物为原料,高分子化改性焦油等为黏结剂,经液压成型、热解交联、水蒸气活化制备竹质成型活性炭,分析了不同黏结剂的成型机制,考察了黏结剂类型、改性焦油添加量、活化温度、活化时间对活性炭性能的影响,结果发现:焦油经芳香化交联改性后,相对分子质量和热稳定性提高了,对竹炭孔道的堵塞作用减轻了,炭颗粒间的黏结和热解交联作用增强了,可制备高性能的竹质成型活性炭;以40 g竹炭粉为原料,在改性焦油添加量12 g、炭化温度550℃、炭化时间90 min、水蒸气活化温度850℃、水蒸气活化时间80 min的条件下制得成型活性炭,其碘吸附值1 232 mg/g,亚甲基蓝(MB)吸附值240 mg/g,强度91%,得率48.5%,比表面积和总孔容分别为1 157 m2/g和0.478 1 cm3/g,对甲苯和四氯化碳的吸附率分别为385 mg/g和75.2%,且成型活性炭的微孔孔容与甲苯和四氯化碳吸附率呈正比关系。  相似文献   

3.
为了再生废弃粉状活性炭,将废弃粉状活性炭、煤焦油和聚乙二醇混合搅拌,并经成型、炭化和活化制备成型颗粒活性炭。采用国家标准和氮气吸附法分析测试活性炭的碘吸附值、亚甲基蓝吸附值、焦糖脱色率、比表面积和比孔容积等,利用热重分析方法研究废弃粉状活性炭、煤焦油和聚乙二醇3种组分及其混合物的热解特征,考察聚乙二醇的用量、分子量以及活化的温度和时间对成型活性炭吸附能力与孔隙结构的影响。研究结果表明:采用粉状活性炭、煤焦油和聚乙二醇混合成型的热再生方法可以制备出糖液脱色用颗粒活性炭;聚乙二醇添加剂可以显著提高活性炭的亚甲基蓝吸附值和焦糖脱色率,促进中孔的形成,但聚乙二醇分子量的影响不明显;在废弃粉状活性炭与聚乙二醇4000的质量比为6∶1,粉状活性炭与煤焦油的质量比1∶1.6,活化温度和时间分别为900℃和2 h等条件下,可以制备出亚甲基蓝吸附值达205 m L/g和焦糖脱色率达到110%的糖液脱色用成型颗粒活性炭。  相似文献   

4.
以废弃的松子壳为原料,采用水蒸气活化法制备松子壳活性炭,系统研究了炭化温度、活化温度、活化时间、活化剂用量等关键工艺因素对活性炭产品性能的影响,分析其对碘吸附值和亚甲基蓝吸附性能的影响。结果显示,松子壳活性炭最佳工艺条件为:炭化温度为500℃、活化温度为860℃、活化时间为90 min、水蒸气流量为2.5 m L/min,此时松子壳活性炭得率为26.08%,碘吸附值为1 338 mg/g,亚甲基蓝吸附值为300 mg/g。松子壳活性炭孔径主要集中在3 nm左右,其平均孔径为2.396 nm,BET比表面积为105 2.68 m~2/g,总孔容积为0.630 6 cm~3/g,微孔容积为0.355 8 cm~3/g,占总孔容积的56.43%。  相似文献   

5.
磷酸活化法制备纤维素基颗粒活性炭   总被引:1,自引:0,他引:1  
以微晶纤维素为原料,在不添加黏结剂的条件下,采用磷酸活化法制备纤维素基颗粒活性炭。分析了捏合过程和炭活化工艺对活性炭耐磨强度、吸附性能和孔隙结构的影响。研究结果表明,炭活化温度的升高及保温时间的延长有利于颗粒活性炭强度的提高;随着浸渍比值的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积、微孔容积和中孔容积均呈不断上升的趋势;浸渍比值较小,较细微孔结构发达,浸渍比值较大,较大微孔结构发达。在较佳的工艺条件下:捏合温度150℃,浸渍比值1.25,捏合时间55 min,炭活化温度450℃和保温时间1.0 h,制得颗粒活性炭的碘吸附值、亚甲基蓝吸附值、强度、比表面积、总孔容积、微孔容积、中孔容积和平均孔径分别为896.6 mg/g、131.3 mg/g、94.69%、1 377.3 m2/g、1.083 cm3/g、0.514 cm3/g、0.569 cm3/g和3.14 nm。  相似文献   

6.
核桃壳脱硫活性炭成型工艺研究   总被引:2,自引:0,他引:2  
研究了羧甲基纤维素钠(CMC-Na)、聚乙烯醇缩丁醛树脂(PVB)和煤焦油等黏结剂和成型压力对新型柱状核桃壳活性炭性能的影响,对其织构性能进行了表征,并考察了脱硫性能。结果表明,以50%(以炭化料质量计,下同)的煤焦油为基本黏结剂,10%CMC-Na和8%淀粉为辅助黏结剂,在4 MPa的压力下真空挤压成型得到的新型柱状活性炭,碘吸附值达到715.6 mg/g,得率为53.5%,抗压强度可达15.1 MPa,比表面积达到564.8 m2/g,总孔容0.38 cm3/g,中孔孔容占总孔容的78.9%。新型柱状核桃壳活性炭的穿透硫容为130.8 mg/g,穿透时间可达8.5 h,具有较好的脱硫性能。  相似文献   

7.
KOH活化制备高比表面积竹活性炭研究   总被引:9,自引:0,他引:9  
研究了KOH浸渍量、活化温度、活化时间等因素对活性炭收率、微孔结构和吸附性能的影响,结果表明:当碱,竹比为0.7,炭化温度为500℃,炭化时间为1h,活化温度为800℃,活化时间为20min时,所制得的活性炭的微孔比表面积达2492m^2/g、碘吸附值2382mg/g、亚甲基蓝吸附值558mg/g。  相似文献   

8.
以杨木、落叶松木、麻秆屑为原料,采用乙酸-亚氯酸钠法对原料进行脱木质素处理,研究木质素对H3PO4法活性炭孔隙结构的影响。通过物理吸附仪测定活性炭的比表面积和孔结构,利用碘值和亚甲基蓝吸附分析其吸附性能;采用TG/DTG分析原料去除木质素前后热解过程。结果表明,除去木质素后活性炭的比表面积、总孔容、外表面积变小;微孔孔容、微孔比表面积增加,木质素的去除有利于微孔的形成;碘吸附量增加,亚甲基蓝吸附量下降。除去木质素后的原料耐热性和热稳定性均下降。  相似文献   

9.
竹材是重要的林业可再生资源,以竹材代替木材制备活性炭可节省大量木材。以竹粉为原料,经磷酸活化成型后进行水蒸气二次活化,在不同工艺条件下制备了高吸附性能活性炭。通过碘吸附值、亚甲基蓝吸附值、N_2吸附-脱附等温线、二硫化碳动态吸附量等对所制活性炭的性能进行表征。结果表明:在磷酸浸渍比1.2∶1、活化时间20 min、活化温度450℃,水蒸气活化温度875℃、活化时间1 h、流量3.0 m L/min条件下,制得的活性炭BET比表面积为1 264.60 m~2/g、总孔容积为1.227 cm~3/g、平均孔径为3.88 nm、碘吸附值为1 452.96 mg/g、亚甲基蓝吸附值为307.5 mg/g、强度为91.76%、得率为30.42%;在动态干燥和30%相对湿度条件下,对二硫化碳的单位质量吸附量分别为0.416和0.390 g/g。活性炭对CS2的吸附能力主要与活性炭的孔结构有关,微孔发达、平均孔径小、碘吸附值高的活性炭更有利于CS2的吸附。由于竹材表观密度相对较低,且受到竹材自身组分的限制,所制活性炭的强度低于椰壳活性炭。  相似文献   

10.
油茶壳活性炭的制备工艺研究   总被引:1,自引:0,他引:1  
以油茶壳为原料,采用直接炭化和二步炭化法制备活性炭,探讨炭化温度和保温时间对活性炭产品得率、亚甲基蓝吸附值和碘吸附值的影响。研究结果表明,随着炭化温度的升高,直接炭化法制得的油茶壳活性炭的吸附性能呈先升后降的趋势;二步炭化法随着保温时间的延长,活性炭的吸附性能呈不断上升的趋势,在较优的工艺条件下,活性炭的亚甲基蓝吸附值和碘吸附值为210.0 mg.g-1和1 016.2 mg.g-1。二步炭化有利于进一步提高直接炭化的油茶壳活性炭的吸附性能,制得吸附性能良好的活性炭材料。  相似文献   

11.
薄皮核桃壳基活性炭的制备及表征   总被引:1,自引:0,他引:1  
【目的】以农林废弃物薄皮核桃壳为原料,通过化学活化-高温炭化法制备多孔活性炭材料,优化制备工艺过程,表征吸附性能机理,为薄皮核桃壳的开发利用提供技术指导。【方法】以碘吸附值和亚基甲蓝吸附值为考察指标,进行活化剂的筛选,并进一步考察原料粒度、料液比、活化时间、炭化温度和炭化时间对制备出的活性炭的吸附性能的影响。采用N2吸附-脱附等温线、元素分析仪和FTIR测定了活性炭的孔隙结构、主要元素组成和表面官能团,扫描电镜分析形貌结构,XRD和TG分析活性炭的结晶度和热稳定性。【结果】选用磷酸为最佳活化剂,薄皮核桃壳活性炭的最佳制备工艺条件为:核桃壳粉100目、料液比1:4、活化时间120 min、炭化温度500℃、炭化时间60 min,此工艺条件下制备出的活性炭的碘吸附值为657.42±3.16 mg/g、亚甲基蓝吸附值为248.55±1.94 mg/g。制备出的活性炭的表面积为449.80 m2/g,具有丰富的孔隙结构,孔容积为1.11 m2/g,平均孔径为7.87 nm。碳元素含量为65.56%,结晶度不高,为无定型结构,活性炭在400℃左右发生热降解,主要含有羧基、酚基、醇羟基等活性官能团。【结论】采用磷酸活化法制备出的薄皮核桃壳活性炭的孔隙结构发达,具有良好的吸附性能,碘吸附值和亚甲基蓝吸附值均高于国家标准,具有将废弃物资源循环利用的价值和前景。  相似文献   

12.
高温炭化法制备竹炭的研究   总被引:1,自引:0,他引:1  
采用高温炭化法制备竹炭,探讨温度、保温时间和升温速率对竹炭吸附性能的影响,并通过N2吸附等温线对其孔隙结构进行表征。结果表明:随着温度提高、保温时间延长,竹炭的亚甲基蓝吸附值和碘吸附值呈现逐步增长的趋势;升温速率的提高,促进了炭素前驱体石墨化程度的提高,不利于竹炭孔隙结构的发达;高温炭化法可以制得微孔、中孔、大孔较发达的竹炭。在较佳的实验条件下,高温炭化法可制得亚甲基蓝吸附值和碘吸附值分别为280 mg.g-1和947.3 mg.g-1的竹炭。  相似文献   

13.
以落叶松木屑为原料,SiO2为孔结构调控剂,采用一步原位掺杂法制备了落叶松基SiO2@C复合材料,探讨了炭化温度、模板剂SiO 2对复合材料孔结构及吸附性能的影响。利用扫描电镜(SEM)、透射电镜(TEM)、氮气的吸附/脱附、拉曼光谱、X射线衍射仪(XRD)、傅里叶红外光谱(FT-IR)仪和X射线光电子能谱(XPS)对复合材料进行表征,并以乙基紫染料为模型物研究了复合材料的吸附行为。研究表明:随着炭化温度由700℃升高至900℃,SiO2@C复合材料的形貌由交联的球形形貌转变为网状结构,孔隙结构由整体无序向局部有序转变,比表面积由538 m^2/g提高到780 m^2/g;经900℃炭化制备的复合材料SiO2@C-900具有较高的比表面积和有序的孔隙结构,对乙基紫染料的吸附值高达378 mg/g,在温度55℃,pH值7的最佳吸附条件下,对乙基紫染料的脱除率达99%;重复利用5次后,脱除率仍在97%以上,说明复合材料稳定性良好。SiO2@C复合材料对染料的吸附符合Langmuir吸附等温模型,吸附动力学符合准二级动力学,即主要是化学吸附。  相似文献   

14.
为研究炭化竹原纤维的特性,进一步提升竹原纤维的使用性能,拓宽竹原纤维的应用领域,采用可控电炉制备了不同炭化温度和不同保温时间条件下的炭化竹原纤维,利用全自动比表面积及孔隙度分析仪测试了炭化竹原纤维的比表面积、比孔容及平均孔径,探讨了炭化条件对其性能的影响。结果表明:随炭化温度的升高和保温时间的延长,炭化竹原纤维的比表面积、比孔容和孔径分布先增大后减小,在较优的工艺条件下,炭化竹原纤维的比表面积和比孔容最大值分别可达819.35m2/g和0.7358cm3/g,平均孔径最小可达2.0836nm。  相似文献   

15.
丙酮回收用活性炭微结构的研究   总被引:3,自引:0,他引:3  
利用AS-703比表面积、孔径分布测定仪对几种回收丙酮溶剂的商品活性炭进行了比较深入的剖析,从微观结构上阐明了影响丙酮回收用活性炭的主要因素,并提供了国产化样品,与进口商品活性炭相比较具有价格低吸附性能好等优点.微孔容积的大小决定了丙酮吸附量的多少,而与总孔容积关系不大.丙酮回收用活性炭的孔径主要集中在1nm左右,微孔容积在0.40~0.50cm3/g.  相似文献   

16.
为了研究高温重整方法对活性炭性能的影响,以商品磷酸法木质成型活性炭为原料,考察了不同升温/降温方式、重整温度和重整时间对活性炭强度、孔结构、着火点和官能团的影响。结果表明:快速升温至800℃重整活性炭30~75 min后快速降温的方式(快速升温/快速降温(FH/FC))可使活性炭强度提高5.75%~6.39%,得率保持在83.54%以上,比梯度升温/自然降温(GI/ND)更高效节能。对经800℃重整30和60 min后的活性炭的孔结构和吸附性进行研究,发现活性炭的比表面积和总孔容积分别下降约400 m2/g和0.3 m3/g,孔径分布在1.2 nm以下的微孔所占的比例增加,对亚甲基蓝的吸附性能略有下降,而对碘的吸附性能略有提高,丁烷工作容量下降15%以内。经高温重整后,活性炭的着火点显著提高,800℃重整60 min后,着火点提高100℃以上,这与高温重整后活性炭表面含氧官能团数量的减少有关。  相似文献   

17.
中孔高性能粒状活性炭的研制   总被引:2,自引:0,他引:2  
以果核壳为原料,采用磷酸活化法制备中孔高性能粒状活性炭,制备过程为:粗粒果核壳中加入质量分数为85%的磷酸加热和定时搅拌,使其润胀膨化,直至粘滞性消失,物料呈分散状态,然后炭化,活化、水洗、烘干。用正交试验法考察了润胀膨化,炭化和活人的温度及时间对制品性能的影响,并作了不同处理原料方式的比较试验,样品性能的测试结果:四氯化碳吸附率最高约160%,A法焦糖脱色力最大约130%。强度最高约94%,总也容积最大1.7mL/g,中孔比例约占40%-50%。  相似文献   

18.
炭化温度对炭化物微观结构影响的研究   总被引:4,自引:4,他引:4  
采用扫描电子显微镜、全自动比表面积及孔径分析仪观察与研究了杉木间伐材在不同炭化温度下炭化物的微观结构、孔径分布、比表面积等,揭示了不同炭化温度下孔隙的形成特点与演变规律。实验表明,炭化温度对炭化物的比表面积与比孔容积特性影响很大,较高温度的炭化物具有较发达的孔隙结构与较高的比表面积。电镜观察可知,随着炭化温度升高,炭化物管胞表面沉积物量减少且颗粒变小,纹孔各层膜逐渐被破坏,纹孔开孔率增大,同时根据电镜观察中试样的放电状况可判断出炭化物导电性情况,随炭化温度升高,炭化物的导电性增大。  相似文献   

19.
木质颗粒活性炭的孔结构对丁烷吸附性能的影响研究   总被引:1,自引:0,他引:1  
对5种不同工艺制备的杉木颗粒活性炭的丁烷活性、丁烷工作容量、丁烷持附性与孔结构之间的关系进行了研究。结果表明:丁烷吸附性能与活性炭样品的比表面积、孔容积和孔径分布有着密切联系。对丁烷活性起作用的孔主要集中在1.16~2.00 nm;对丁烷工作容量有显著影响的孔径介于2.0~4.0 nm;对丁烷持附性影响最大的孔分布在0.5~1.0 nm。大孔对整个吸附过程没有什么显著影响,只是作为丁烷分子进入中孔、微孔的输送通道。  相似文献   

20.
氨水改性活性炭及其性能的研究   总被引:1,自引:0,他引:1  
采用氨水对活性炭进行改性,探讨氨水浓度、改性温度和处理时间对活性炭的吸附值、比表面积和表面化学结构的影响.结果表明,氨水改性对活性炭的孔结构产生破坏,不利于孔隙结构的发达,但氨水改性在活性炭表面引入了碱性基团,有利于苯酚吸附值的提高.随着氨水浓度的提高,活性炭的碘吸附值、比表面积、总孔容积和微孔容积不断下降,亚甲基蓝吸附值呈先降后升的趋势,碱性基团的含量和苯酚吸附值不断提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号