首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In agricultural headlands, rooting and yield of crops may be limited because of soil‐structure changes as a consequence of multiple passes of turning machinery. We hypothesized that perennial forage crops can substantially alter soil structure in agricultural headlands. On one experimental field and two commercial farms on Haplic Luvisols from respectively loess and sandy loess in the Lower Rhine Bay (Germany), we investigated how 4 y of continuously grown grass/clover or alfalfa affected soil structure and the performance of subsequent spring wheat. Compared with a crop rotation with annual plowing to 30 cm soil depth, perennial forage crops led to increased soil C content (+1.3% to +22.8%) and N content (+4.2% to +15.1%), higher densities of medium and coarse biopores at a depth of 35 cm, more large water‐stable soil macroaggregates, higher biomass and abundance of anecic earthworms, and higher grain yield and grain protein content of spring wheat grown as the following crop. Root‐length density of spring wheat in the subsoil was not affected by the preceding perennial fodder crops in two of the three field trials. We concluded that besides increasing N input to the soil, perennial cropping of grass/clover or alfalfa has effects on soil structure that may substantially reduce yield losses in agricultural headlands.  相似文献   

2.
Bermudagrass (Cynodon dactylon L.) is a warm season perennial that is well adapted in the southern Great Plains. It is one of the region's most important forage crops used for livestock production, and is commonly grown without legume interseeding. Recent research has investigated ways of improving the quality and quantity of this forage. The objectives of this study were to determine the effect of interseeded legumes and phosphorus (P) fertilizer on bermudagrass pasture forage yield and crude protein content. One experiment was initiated in 1993 in eastern Oklahoma in an established bermudagrass pasture. Red clover (Trifolium pratense L.), ladino clover (Trifolium repens L.), and two varieties of alfalfa (Medicago sativah), ’alfagraze’ and'common’, were interseeded by hand into an established stand of bermudagrass. The effect of P on forage yield and crude protein was evaluated using a 30‐kg P ha‐1 rate applied at establishment versus no applied P. Forage yield was collected three times throughout the growing season each year from 1994 through 1997. When both alfalfa varieties were interseeded into a bermudagrass pasture without applying additional P fertilizer, forage yields for the legume‐grass mixtures decreased below those obtained from the monoculture bermudagrass in the first year of the stand. The alfalfa variety ‘alfagraze’ interseeded into established bermudagrass decreased total forage yield over the entire 4‐yr study. Interseeded red clover and ladino clover increased crude protein of the forage compared with monoculture bermudagrass the first two years of the study, with red clover continuing to increase crude protein in the fourth year. However, when 30 kg P ha‐1 was applied to the bermudagrass prior to establishment of the legumes, no change in yield or protein was observed for both alfalfa varieties’ interseeding treatments versus the unfertilized mixtures. Although forage yield may not be increased, interseeding legumes into established bermudagrass could provide an efficient way to improve pasture crude protein without the use of inorganic fertilizers. However, if alfalfa ('common’ or ‘alfagraze') is interseeded, additional P may need to be applied at legume establishment to prevent possible yield decreases.  相似文献   

3.

Background

Organic vegetable production has a demand for alternative fertilizers to replace fertilizers from sources that are not organic, that is, typically animal-based ones from conventional farming.

Aims

The aim of this study was to develop production strategies of plant-based fertilizers to maximize cumulative nitrogen (N) production (equal to N yield by green manure crops), while maintaining a low carbon-to-nitrogen (C:N) ratio, and to test the fertilizer value in organic vegetable production.

Methods

The plant-based fertilizers consisted of the perennial green manure crops—alfalfa, white clover, red clover, and a mixture of red clover and ryegrass—and the annual green-manure crops—broad bean, lupine, and pea. The crops were cut several times at different developmental stages. The harvested crops were used fresh or pelleted as fertilizers for field-grown white cabbage and leek. The fertilizer value was tested with respect to biomass, N offtake, N recovery, and soil mineral N (Nmin). Poultry manure and an unfertilized treatment were used as controls.

Results

The cumulative N production of the perennial green manure crops ranged from 300 to 640 kg N ha–1 year–1 when cut two to five times. The highest productions occurred at early and intermediate developmental stages, when cut three to four times. Annual green manure crops produced 110–320 kg N ha–1 year–1, since repeated cutting was restricted. The C:N ratio of the green manure crops was 8.5–20.5, and increased with developmental stage. The fertilizer value of green manure, as measured in white cabbage and leek, was comparable to animal-based manure on the condition that the C:N ratio was low (<18). N recovery was 20%–49% for green manure and 29%–42% for poultry manure. A positive correlation was detected between soil Nmin and vegetable N offtake shortly after incorporating the green manure crops, indicating synchrony between N release and crop demand.

Conclusions

Plant-based fertilizers represent highly productive and efficient fertilizers that can substitute conventional animal-based fertilizers in organic vegetable production.  相似文献   

4.
ABSTRACT

Research was conducted to determine the effects of perennial legume and their mulches on cereal grain yield and the alterations to clay loam Cambisol properties. The perennial legumes (Trifolium pratense L., Medicago sativa L.) as well as their mixtures with festulolium (x Festulolium) were studied in conjunction with their aboveground biomass management methods: removal from the field (cut twice for forage), mixed management (the first cut was for forage, the second and third cuts were mulched) and mulching (four times) in an organic arable farming system. Mulching of legumes biomass resulted in a higher total nitrogen (N) used for green manure. A similar amount of N was accumulated for lucerne and lucerne-festulolium mulch when using mulching and mixed management. Legumes used for mulching caused the amount of mineral N in soil to increase in late autumn (62.7–82.9 kg ha–1) and decrease in spring (39.5–64.0 kg ha–1). This mineral N had a positive impact on crop yield (r = 0.68–0.71*); however, mineral N in autumn had a negative impact on soil sustainable organic compounds (r = ?0.71*). The results indicate that the most suitable treatment was the legume-festulolium mixture, which used the biomass under mixed management.  相似文献   

5.

Forage crops and soil attributes were evaluated for 4 years at three sites in Alaska. Annual herbage yields usually exceeded 5 Mg ha-1 on neutral soils at Fairbanks (64°52' W) and on moderately acidic soils at Point MacKenzie (61°24' N, 150°3' W). Strongly acidic, droughty soils at Delta Junction (63°55' N, 145°20' W) produced low yields for all crops. Soil pH decreased significantly over 4 years under N-fertilized grasses at Delta Junction and under alfalfa and N-fertilized barley at Fairbanks. Soil organic C and N and microbial biomass C showed no differences among treatments at the end of the study. Wet aggregate stability did not vary significantly among crops but was lower for fallow. The results of this study indicated a high potential for use of perennial forage legumes at some locations in Alaska. The lack of large differences in most soil parameters indicates slow responsiveness to management by some commonly used soilquality indicators under subarctic conditions.  相似文献   

6.
Our understanding of how mineral nutrition affects productivity and composition of bioenergy crops grown on marginal lands remains fragmented and incomplete despite world‐wide interest in using herbaceous biomass as an energy feedstock. Our aim was to determine switchgrass (Panicum virgatum L.) biomass production and maize (Zea mays L.) grain yield on marginal soils used previously to evaluate the effect of soil phosphorus (P) and potassium (K) fertility on alfalfa (Medicago sativa L.) forage production. Grain yield of maize was reduced on P‐ and/or K‐limited plots that also impaired alfalfa forage yield, whereas switchgrass biomass yields were high even in plots possessing very low available P (4 mg kg–1) and K (< 70 mg kg–1) levels. Linear‐plateau regression models effectively described the relationship of soil test P and K to tissue P and K concentrations, and tissue P and K concentrations accurately predicted removal of P and K in harvest biomass. However, neither soil‐test P and K, nor tissue P and K concentrations were effective as diagnostics for predicting switchgrass biomass yield nor could soil tests and their change with cropping predict nutrient removal. Concentrations of cellulose, hemicellulose, lignin, and ash were not influenced by P and K nutrition. Predicted bio‐ethanol production was closely associated with biomass yield whereas high biomass K concentrations reduced estimated bio‐oil production per hectare by as much as 50%. Additional research is needed to identify diagnostics and managements to meet the bioenergy production co‐objectives of having high yield of biomass with very low mineral nutrient concentrations (especially K) while sustaining and improving the fertility of marginal soils.  相似文献   

7.
A selection process for an ideal cover crop for yarn, maize, and cassava was initiated in 1993 cropping season in Makurdi, Nigeria. Four types of food legume crops grown locally were selected for the trials. The yield potentials of akidi (Phaseolus vulgaris), ground akidi (Sphenostylis stenocarpa), odudu (Phaseolus lunatus), and kafanji (Vigna unguiculata) were evaluated in two cropping seasons and under conditions where either no fertilizers, 50 kg nitrogen‐potassium‐phosphorus (NKP)/ha or 21 kg P/ha from single superphosphate (SSP) source were applied. The crops were planted in April and repeated in August of the same year in a 4 x 3 factorial in a split‐plot design. Fertilizer NKP generally increased the grain yield of all the crops significantly. The yield differences due to P fertilizers for odudu and akidi were not statistically significant (P=0.05). The P fertilizer resulted in significant increases in the grain yield of kafanji (from 1.113 to 1.7 mt/ha) and ground akidi (0.97 to 1.27). The biomass, root systems, and nodule yields were also increased proportionally by P application for all the legumes. No significant yield differences was observed between early and late crops in grain yield when no fertilizer was used. However, the crops produced about 30–40% less nodules, biomass, and root yield due to late planting (August).  相似文献   

8.
Central Brazil is the region with the most dynamic agriculture expansion worldwide, where tropical forests and Cerrado (Brazilian savanna) are converted to pastures and crop fields. Following deforestation, agricultural practices, such as fertilization, tillage and crop rotations, alter soil parameters and affect microbial abundances and the C and N cycles. The objective of this study was to compare changes in soil fertility, stocks of soil C and N, microbial biomass, and abundance of bacteria, fungi and archaea in Cerrado soils following land use change to crops (soybean/corn/cotton) and pasture (the perennial forage grass Brachiaria brizantha A. Rich.). Agriculture increased soil fertility and conserved soil C and N since their absolute concentration values were highest in agriculture soils and the C and N stocks adjusted by soil density were similar to the native vegetation soils. At the same time, agriculture changed the microbial abundances (decrease of microbial biomass C and N, increase of archaea, and reduction of bacteria and fungi at the crop sites), and N dynamics (increase of soil ammonium and nitrate concentrations). Even if these changes can be beneficial for food and agricultural commodities production, all these soil alterations should be further investigated due to their possible unknown effects on biosphere–hydrosphere–atmosphere exchange processes such as greenhouse gases emissions and nitrate leaching.  相似文献   

9.
Soil fertility is declining in most agro‐ecosystems in sub‐Saharan Africa, and incorporation of forage legumes into production systems to utilize the nitrogen fixed by the legumes could alleviate the problem, if efficient nitrogen‐fixing legumes are used. The amounts of nitrogen fixed by Lablab, Medicago, Trifolium, and Vicia species and their contribution to the following wheat crop were estimated in field experiments on an Alfisol at Debre Zeit in the Ethiopian highlands. The amounts of nitrogen (N) fixed ranged from 40 kg N ha‐1 for T. steudneri to 215 kg N ha‐1 for L. purpureus. The increase in grain yields of wheat following the legumes ranged from 16% for T. steudneri to 71% for M. tranculata where no N fertilizer was applied to the wheat. Additional N fertilizer applied to wheat at 60 kg N ha‐1 had no significant effects on wheat grain or straw DM andN yields. In another experiment, eight lablab treatments consisting of factorial combinations of two cultivars (Rongai and Highworth), two Rhizobium inoculation treatments (inoculated and uninoculated) and two times of harvest (for hay at 50% flowering and for seed at seed maturity), were compared on lablab forage production and N yield, and residual effects on two succeeding wheat crops. Inoculation had no significant effects on nodulation, shoot DM or N yields. Rongai had significantly higher shoot DM and N yields than Highworth. Lablab harvested at flowering had significantly higher shoot DM and N yields than lablab harvested at seed maturity. Grain yields of the first wheat crop following the various lablab crops were 93–125% higher than grain yields of the wheat following wheat (continuous wheat) where no N fertilizer was applied. Therefore, lablab is a potential forage crop for incorporation into cereal production systems to improve feed quality and to reduce dependence on N fertilizers for cereal production.  相似文献   

10.
Three perennial legumes (alfalfa, red clover and birdsfoot trefoil) and four cool-season perennial grasses (orchardgrass, tall fescue, Italian ryegrass and red fescue) were grown in legume–grass combinations and in pure stands of individual species, at three locations in the West Balkan region (Novi Sad, Banja Luka and Pristina) in the period from 2012 to 2015. The study evaluated dry matter yield, legume–grass–weed proportion and forage quality. High annual forage yield of legume–grass mixtures can be obtained with proper selection of species and an appropriate legume–grass ratio. However, high and stable yield, particularly in the case of grasses, depends on the amount and schedule of precipitation as well as the cutting time. The mixtures and legume pure stands achieved better forage production both per cutting and on the annual basis and had better forage quality than grass pure stands.  相似文献   

11.
Soil invertebrates are the major determinants of soil processes such as organic matter decomposition and nutrient cycling. However, the effect of quantity and quality of organic inputs on soil biota has not been studied in agroforestry systems in southern Africa. Variations in soil macrofauna abundance under maize grown in fallows of Gliricidia sepium, Acacia anguistissima, Leucaena collinsii, Leucaena diversifolia, Leucaena esculenta, Leucaena pallida, Senna siamea, Calliandra calothyrsus and monoculture maize were assessed at three sites with contrasting agro-ecological conditions in eastern Zambia. It was hypothesised that spatial variations in soil macrofauna abundance under maize crops are mediated by heterogeneity in the quality and quantity of organic inputs produced by these legumes. The relationships between the abundance of macrofauna groups and litter, leaf, stump re-sprout and recycled biomass, stump survival and the quality index lignin (L)+polyphenol (P) to nitrogen (N) ratio were assessed using generalised linear models assuming spatial randomness (Poisson distribution) and aggregation (negative binomial distribution). Earthworms, beetles and millipedes showed spatial aggregation, which was partly explained by the heterogeneity in organic resource quantity and quality. Earthworms and beetles were more abundant under legumes that produced high quantities of biomass with low (L + P) to N ratios and species that have high stump survival after coppicing. Millipedes were favoured by species which produced high quantities of biomass with high (L + P) to N ratios. Although ants and termites showed spatial aggregation, their distributions were not influenced by the quantity or quality of biomass produced by the legumes. Centipedes and Arachnida showed spatial randomness, and their distribution was not influenced by any of the organic quality and quantity variables.  相似文献   

12.
Summary An attempt has been made to estimate quantitatively the amount of N fixed by legume and transferred to the cereal in association in intercropping systems of wheat (Triticum aestivum L.) — gram (Cicer arietinum L.) and maize (Zea mays L.) —cowpea (Vigna unguiculate L.) by labelling soil and fertilizer nitrogen with 15N. The intercropped legumes have been found to fix significantly higher amounts of N as compared with legumes in sole cropping if the intercropped cereal-legume received the same dose of fertilizer N as the sole cereal crop. But when half of the dose of the fertilizer N applied to sole cereal crop was received by intercropped plants, the amount of N fixed by legumes in association with cereals was significantly less than that fixed by sole legumes. Under field conditions 28% of the total N uptake by maize (21.2 kg N ha–1) was of atmospheric origin and was obtained by transfer of fixed N by cowpea grown in association with maize. Under greenhouse conditions gram and summer and monsoon season cowpea have been found to contribute 14%–20%, 16% and 32% of the total N uptake by associated wheat and summer and monsoon maize crops, respectively. Inoculation of cowpea seeds with Rhizobium increased both the amount of N fixed by cowpea and transferred to maize in intercropping system.  相似文献   

13.
The phytomeliorative efficiency of different groups of perennial herbs was studied. The agrophysical properties of soils under natural grasses (the feather grasses Stipa pennata, S. zalesskii, and S. Lessingiana; the fescue grass Festuca pseudovina; and quack grass), sawn herbs (awnless brome, crested wheat grass, purple alfalfa, the holy clover Onobrychis sibirica, the galega Galega orientalis, and yellow sweet clover), and cereal crops (winter rye and spring wheat) were compared. The formation of the aboveground and underground phytomass and the influence of phytomeliorative herbs on the aggregate state of leached, ordinary, and southern chernozems in the Transural part of Bashkortostan were analyzed.  相似文献   

14.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

15.
A 2-year field study was conducted to evaluate the effect of two organics, farmyard manure and vermicompost, each at three rates (0, 5, 10 t ha?1 and 0, 1, 2 t ha?1, respectively), along with two levels of mineral fertilizer (75% and 100% of recommended dose), on crops yields and soil properties under a wheat–fodder maize cropping sequence. Individual addition of organics at a higher level increased yields of wheat and subsequent maize. Soil microbial biomass carbon was enhanced as both a direct and residual effect with the addition of farmyard manure followed by vermicompost and fertilizer treatments, and also by combined addition of manure with either vermicompost or mineral fertilizer. Farmyard manure increased the availability of soil macro- and micronutrients, whereas vermicompost influenced only the availability of micronutrients at wheat harvest. A residual effect of farmyard manure and mineral fertilizers was found for available N. Meanwhile, the residual status of micronutrients in the soil was either maintained or significantly improved due to organic amendments (Mn and Zn with farmyard manure; Fe and Zn with vermicompost). Interaction of farmyard manure and vermicompost at a higher level benefited the next crop by increasing the yield of fodder maize and improving the availability of P and metals in soil.  相似文献   

16.
ABSTRACT

In order to understand how soil microbial biomass was influenced by incorporated residues of summer cover crops and by water regimes, soil microbial biomass carbon (C) and nitrogen (N) were investigated in tomato field plots in which three leguminous and a non-leguminous cover crop had been grown and incorporated into the soil. The cover crops were sunn hemp (Crotalaria juncea L., cv ‘Tropic Sun’), cowpea (Vigna unguiculata L. Walp, cv ‘Iron clay’), velvetbean (Mucuna deeringiana (Bort) Merr.), and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense (Piper) Stapf) vs. a fallow (bare soil). The tomato crop was irrigated at four different rates, i.e., irrigation initiated only when the water tension had reached ?5, ?10, ?20, or ?30 kPa, respectively. The results showed that sorghum sudangrass, cowpea, sunn hemp, and velvetbean increased microbial biomass C by 68.9%, 89.8%, 116.8%, and 137.7%, and microbial N by 58.3%, 100.0%, 297.3%, and 261.3%, respectively. A legume cover crop, cowpea, had no statistically significant greater effect on soil microbial C and N than the non-legume cover crop, sorghum sudangrass. The tropical legumes, velvetbean and sunn hemp, increased the microbial biomass N markedly. However, the various irrigation rates did not cause significant changes in either microbial N or microbial C. Soil microbial biomass was strongly related to the N concentration and/or the inverse of the C:N ratio of the cover crops and in the soil. Tomato plant biomass and tomato fruit yields correlated well with the level of soil microbial N and inversely with the soil C:N ratio. These results suggest that cover crops increase soil microbiological biomass through the decomposition of organic C. Legumes are more effective than non-legumes, because they contain larger quantities of N and lower C:N ratios than non-legumes.  相似文献   

17.
Grasses and legumes are grown together worldwide to improve total herbage yield and the quality of forage, however, the causes of population oscillations of grasses and legumes are poorly understood. Especially in grasslands, earthworms are among the most important detritivore animals functioning as ecosystem engineers, playing a key role in nutrient cycling and affecting plant nutrition and growth. The objectives of the present greenhouse experiment were to quantify the effects of earthworms on grass–legume competition in model grassland systems at two harvesting dates – simulating the widespread biannual mowing regime in Central European grasslands.The presence of earthworms increased the productivity of grasses and legumes after 6 weeks but only that of grasses after another 10 weeks. In mixed treatments, the presence of grasses and earthworms decreased legume shoot biomass, the amount of nitrogen (N) in shoot tissue and the number of legume flowerheads while the presence of legumes and earthworms increased the amount of N in grass shoots and the infestation of grasses with aphids. Analyses of 15N/14N ratios indicate that, compared to legumes, grasses more efficiently exploit soil mineral N and benefit from legume presence through reduced “intra-functional group” competition. In contrast to previous experiments, we found no evidence for N transfer from legumes to grasses. However, legume presence improved total herbage and N yield.Earthworms likely modulate the competition between grasses and legumes by increasing soil N uptake by plants and thereby increasing the competitive strength of grasses. Earthworms function as essential driving agents of grass–legume associations by (I) increasing grass yield, (II) increasing the amount of N in grass hay, (III) increasing the infestation rate of grasses with aphids, and (IV) potentially reducing the attractiveness of grass–legume associations to pollinators.  相似文献   

18.
Low supply of nutrients is a major limitation of forage adaptation and production in acid soils of the tropics. A glasshouse study was conducted to find differences in plant growth, nutrient acquisition and use, among species of tropical forage grasses (with C4 pathway of photosynthesis) and legumes (with C3), when grown in two acid soils of contrasting texture and fertility. Twelve tropical forage legumes and seven tropical forage grasses were grown in sandy loam and clay loam Oxisols at low and high levels of soil fertility. After 83 days of growth, dry matter distribution among plant leaves, stems, and roots, leaf area production, shoot and root nutrient composition, shoot nutrient uptake, and nutrient use efficiency were measured. Soil type and fertility affected biomass production and dry matter partitioning between roots and shoots. The allocation of dry matter to root production was greater with low soil fertility, particularly in sandy loam. The grasses responded more than the legumes to increased soil fertility in both shoot and root biomass production. Leaf area production and the use of leaf biomass for leaf expansion (specific leaf area) were greater in legumes than in grasses, irrespective of soil type and fertility. But soil type affected shoot biomass production and nutrient uptake of the grasses more than those of the legumes. There were significant interspecific differences in terms of shoot nutrient uptake. The grasses were more efficient than legumes in nutrient use (grams of shoot biomass produced per gram of total nutrient uptake) particularly for nitrogen (N) and calcium (Ca).  相似文献   

19.
Abstract

There is interest in intercropping perennial legumes with com (Zea mays L.) under no‐tillage soil management. Evaluation of N availability by measuring plant N uptake in field research trials with such systems is often complicated by competition for water. We monitored soil inorganic N (ammonium and nitrate) levels at 14‐day intervals for 42 days at 0–10 cm and 10–20 cm soil depths after an alfalfa (Medicago sativa L.) sod was subjected to four different suppression treatments: a) cut and remove, b) cut and return, c) above‐ground kill with paraquat, and d) complete kill with glyphosate. The initial (14 day) release of N was similar in all treatments where residues were left or returned, but alfalfa regrowth immobilized much of the N mineralized in all treatments, except where alfalfa was killed. The greatest quantity of soil inorganic N was found on day 28 where alfalfa was killed, equal to nearly 72% of the N contained in the alfalfa topgrowth. Soil nitrate N concentrations, averaged to a depth of 20 cm and over the 28 and 42 day sampling times, were 6, 9, 13, and 28 mg N/kg for cut and remove, cut and return, paraquat and glyphosate treatments, respectively. Only where alfalfa was killed did soil nitrate concentrations reach the levels established in recently published work as indicative of no further need for fertilizer N (21–25 mg N/kg). These results suggest that a perennial alfalfa intercrop will compete with corn for available soil N. Measures of inorganic soil N might now permit the evaluation of N adequacy for com in various intercrop systems.  相似文献   

20.
In this study, the effects of growing maize plants on the microbial decomposition of easily degradable plant residues were investigated in a 90-day pot experiment using a sandy arable soil. Four treatments were carried out: (1) untreated control, (2) with freshly chopped alfalfa residues (Medicago sativa L.) incorporated into soil, (3) with growing maize plants (Zea mays L.), and (4) with growing maize plants and freshly chopped alfalfa residues incorporated into soil. The amount of alfalfa residues was equivalent to 1.5 mg C g−1 soil and 120 μg N g−1 soil. At the end of the experiment, only the combination of growing maize plants and alfalfa residues significantly increased the contents of microbial biomass C, microbial biomass N, and ergosterol in soil compared to the non-amended control. The dry weight of the maize shoot material was more than doubled in the treatment with alfalfa residues than without. In treatment (2), 6% of the alfalfa residues could be recovered as plant remains >2 mm. In treatment (4), this fraction contained 14.7% alfalfa residues and 85.3% maize root remains, calculated on the basis of δ 13C values. This means that 60% more alfalfa-C was recovered than in treatment (2). The reasons for the retardation in the breakdown of alfalfa residues might be water deficiency of soil microorganisms in the increased presence of maize roots. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 23% of the alfalfa residues were found as CO2 monitored with a portable gas analyzer with a dynamic chamber. The discrepancy is probably due to problems in measuring peak concentrations of CO2 evolution in the two alfalfa treatments at the beginning of the experiment and in the two maize treatments at the end, especially in treatment (4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号