首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ogura male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. In this study, in order to gain better understanding of the variation and evolution of the restoration of the fertility (Rf) gene for Ogura male-sterile cytoplasm, the nucleotide sequence of the orf687 homologue in the Japanese wild radish (Raphanus sativus var. hortensis f. raphanistroides Makino) was analyzed using an F2 population made with a cross between a Japanese wild radish plant containing the Rf gene and ‘Uchiki-Gensuke’ (a maintainer of Ogura-male sterility). Segregation of male-fertile/-sterile plants in the F2 generation suggested that another unidentified Rf gene unlinked to orf687 exists in the Japanese wild radish. The genotype of orf687 was determined for each F2 plant by Southern hybridization with an orf687 gene probe, mismatch-specific endonuclease digestion of PCR products, and direct sequencing of a PCR product. Genotyping revealed that some fertility-restored plants are homozygotic for the ‘Uchiki-Gensuke’ type orf687 allele, supporting the idea that another gene different from orf687 also functions as an Rf gene for Ogura male-sterility. Protein analysis using an antibody raised against the Ogura-specific ORF138 protein suggests a mechanism of fertility restoration by the unidentified Rf similar to that by orf687. Sequence analysis of orf687 from a Japanese wild radish plant and ‘Uchiki-Gensuke’ revealed that both orf687 regions encode a mitochondrially-targeted protein consisting of 687 amino acids with 16 PPR motifs. Comparison of the deduced amino acid sequences with those of the known orf687 sequences from ‘Yuan hong’ and ‘Kosena’ containing Rf and recessive one (rf), respectively, showed that three unique amino acid replacements are present in ORF687 of the Japanese wild radish. Two of the three replacements, that from lysine to isoleucine at position 232 and from asparagine to asparate at position 240, confer negative charges to the protein. Since the Rf of ‘Yuan hong’ was reported to have a unique replacement that confers a negative charge to ORF687 (from asparagine to aspartate at position 170), it is proposed that the amino acid replacements conferring a negative charge to ORF687 are important for determining the status of the Rf/rf gene.  相似文献   

2.
S. Murakami    K. Matsui    T. Komatsuda  Y. Furuta 《Plant Breeding》2005,124(2):133-136
The Rfm1 gene restores the fertility of the msm1 and msm2 male‐sterile cytoplasms in barley. Rfm1 is located on the short arm of chromosome 6H. To develop molecular markers tightly linked to Rfm1 for use in sophisticated marker‐assisted selection and map‐based cloning, an amplified fragment‐length polymorphism (AFLP) marker system with isogenic lines and a segregating BC1F1 population was used. Nine hundred primer combinations were screened and a linkage map was constructed around the Rfm1 locus by using 25 recombinant plants selected from 214 BC1F1 plants. Three AFLP markers were identified, e34m2, e46m19 and e48m17, linked to the locus. The most closely linked markers were e34m2, at 1.0 cM distally and e46m19, at 1.1 cM proximally. The two AFLP markers were converted to dominant STS markers. These markers should accelerate programmes for breeding restorer lines and will be useful for map‐based cloning.  相似文献   

3.
The pol cytoplasmic male-sterility system has been widely used as a component for utilization of heterosis in Brassica napus and offers an attractive system for study on nuclear–mitochondrial interactions in plants. Genetic analyses have indicated that one dominant gene, Rfp, was required to achieve complete fertility restoration. As a first step toward cloning of this restorer gene, we attempted molecular mapping of the Rfp locus using the amplified fragment length polymorphism (AFLP) technique combined with bulked segregant analysis (BSA) method. A BC1 population segregating for Rfp gene was used for tagging. From the survey of 1,024 AFLP primer combinations, 13 linked AFLP markers were obtained and five of them were successfully converted into sequence characterized amplified region (SCAR) markers. A population of 193 plants was screened using these markers and the closest AFLP markers flanking Rfp were at the distances of 2.0 and 5.3 cM away, respectively. Further the AFLP or SCAR markers linked to the Rfp gene were integrated to one doubled-haploid (DH) population derived from the cross Quantum × No.2127-17 available in our laboratory, and Rfp gene was mapped on N18, which was the same as the previous report. These molecular markers will facilitate the marker-assisted selection (MAS) of pol CMS restorer lines.  相似文献   

4.
Resistance to Fusarium oxysporum f.sp. melonis race 2 is conferred by a single dominant gene, Fom-1 in melon. Here, we identified DNA markers tightly linked to Fom-1 that could be used for marker assisted selection in breeding programs. First, we developed 125 F2 plants derived from the cross between melon lines P11 (fom-1fom-1) and MR-1 (Fom-1Fom-1). Using the F2 population, we constructed a linkage map including 14 SSR markers which had not been mapped previously. Fom-1 was confirmed to be allocated to linkage group 7. Then, we identified four AFLP markers using bulked segregant analysis. The AFLP marker TAG/GCC-470 was completely linked to Fom-1 and other three markers were mapped near Fom-1. TAG/GCC-470 and TCG/GGT-400 were respectively converted to STS and CAPS markers. Usefulness of DNA markers was confirmed in the analysis with several melon cultivars and lines.  相似文献   

5.
Rs1046AB is a line which is true breeding for a dominant genetic male sterility gene (Ms) but which is a mixture of male fertile and sterile individuals (a two-type line) because it is segregating for a dominant suppressor gene (Rf). This system provides a promising alternative to the CMS system for hybrid breeding in Brassica napus. In order to identify molecular markers linked to the rf gene, a near-isogenic line (NIL) population from the cross between a sterile individual (MsMsrfrf) and a fertile individual (MsMsRfrf) in Rs1046AB was subjected to amplified fragment length polymorphism (AFLP) analysis, with a combination of comparing near isogenic lines (NILs) and bulked segregant analysis (BSA). From 2,816 pairs of AFLP primers, six fragments showing polymorphism between the fertile and sterile bulks as well as the individuals of the bulks were identified. Linkage analysis indicated that the six AFLP markers are tightly linked to the Rf gene and all are distributed on the same side. The minimum genetic distance between the Rf gene and a marker was 0.7 cM. Since the AFLP markers are not suitable for large-scale application in MAS (marker-assisted selection), our objective was to develop a fast, cheap and reliable PCR-based assay. Consequently, three of the four closest AFLP markers were converted directly to sequence characterized amplified region (SCAR) markers. For the other marker a corresponding SCAR marker was successfully obtained after isolating the adjacent sequences by PCR Walking. The available SCAR markers of the Rf gene will greatly facilitate future breeding programs using dominant GMS to produce hybrid varieties.  相似文献   

6.
Summary Fertility restoration in the cross between a cytoplasmic male sterile line, 2 cm 183, and the restorer line, BCZ 111, (both obtained from France) was dominant in F1 and segregated in a 9:7 ratio in the F2 generation and thus suggested the action of two independent, complementary dominant genes controlling restoration. The behaviour of F3 families broadly confirmed the F2 ratio. The reasons underlying this pattern of inheritance has been discussed and the genetic symbols rf 1 rf 1 rf2 rf2and Rf 1 Rf 1 Rf 2 Rf 2 have been suggested for the male sterile and the restorer parents respectively.  相似文献   

7.
A random amplified polymorphic DNA (RAPD) marker named OPC06-1900 was previously found linked to a fertility restorer gene (Rfw) for cytoplasmic male sterility (CMS) in radish (Raphanus sativus L.). The RAPD marker was converted to a dominant sequence characterized amplified region (SCAR) marker SCC06-1894 by molecular cloning and nucleotide sequencing. A BLAST search revealed that the SCAR marker SCC06-1894 showed significant homology to the corresponding regions of Arabidopsis and Brassica sulfate transporter genes. The presence of the intron and exon of the DNA fragment SCC06-1894 was demonstrated by comparing RT-PCR and PCR products. Thus, allele-specific oligonucleotide primers were designed to amplify the SCAR marker SCC06-415. PCR test with F2 plants and sequence analysis showed that SCC06-1894 and SCC06-415 were allelic, linked to Rfw/rfw gene at 8.0 cM. Nine oligonucleotide primers were designed based on a single radish nuclear restorer gene mRNA. A survey of these primer combinations by bulked segregant analysis (BSA) identified three polymorphisms. The three PCR-based markers were co-segregant in the coupling phase and distant from the Rfw gene by 1.4 cM. These specific markers distributed on both sides of the Rfw gene and will be helpful for breeding new rapseed (Brassica napus L.) restorer lines.  相似文献   

8.
Tagging of restorer genes for wild abortive (WA) CMS source by studying a 222 individual plants from a F2 population of a cross between IR58025A × IR42686R. The restorer line IR42686R that was used in this study had been previously derived through random mating composite population (RMCP) involving 12 parents facilitated by IR36 genetic male sterility. Four Rf genes were tagged to simple sequence repeats (SSR) markers on chromosomes 1, 7, 10, 12 by recessive class analysis. The recombination frequency between a positive marker and Rf locus was calculated using maximum likelihood estimator assuming that all the 46 extremely sterile individual plants were homozygous at the targeted Rf locus. The recombination frequency between the marker and the restorer trait were converted to genetic distances using Kosambi function. A new Rf locus designated as Rf7 on chromosome 12 was found to be linked to RM7003 at a genetic distance of 13.3 cM (LOD 6.12). We report here first, a new molecular marker (RM 6344) linked to Rf4 locus on chromosome 7 that was previously mapped by trisomic analysis. RM443 and RM315 were flanking the Rf3 gene at a genetic distance of 4.4 (LOD 10.29) and 20.7 cM (LOD 3.98) on chromosome 1, respectively. The Rf6 was flanked on both side with SSR markers RM258 and RM591 at a genetic distance of 4.4 (LOD 10.29) and 23.3 cM (LOD 3.39) located on chromosome 10. The random mating composite population is an excellent breeding approach to develop superior restorer lines and for pyramiding different Rf genes of different CMS systems. Rf genes tagged with closely linked SSR markers would be facilitating marker assisted selection (MAS) in hybrid rice breeding program by reducing time and workload for identifying potential restorers. L. Bazrkar and A. J. Ali equally contributed to this work.  相似文献   

9.
Non‐pungent bell pepper (Capsicum annuum L.) lacks the cytoplasmic male sterility (CMS) nuclear restorer allele, Rf, and CMS cannot be employed in its F1 hybrid seed production. To demonstrate that the genic male sterility (GMS) system in non‐pungent bell pepper can be converted to the CMS male sterility system, the conversion of GMS to CMS for non‐pungent bell pepper line GC3 was conducted by introgression of S‐type cytoplasm and the Rf allele from tropical pungent donors. After morphological traits were evaluated, two lines from BC1F1 containing S‐type cytoplasm and four lines from BC2F2 containing Rf allele, phenotypically similar to GC3, were obtained and could be employed as CMS male sterile lines and restorer lines for non‐pungent bell pepper. Four molecular markers potentially linked to traits of interest were also evaluated in BC1F1 and BC1F2 populations. This is the first time that GMS has been successfully converted to CMS in bell pepper, a significant contribution for bell pepper hybrid seed production.  相似文献   

10.
The use of bulked leaf samples from individual plants for amplified fragment length polymorphism (AFLP) analysis was evaluated as a tool for assessment of genetic diversity in white clover (Trifolium repens L.). Bulking of leaf samples produced slightly simpler AFLP profiles compared to the combined profiles of individual plants from the same cultivar. Approximately 90% of bands which were present in individual plants were present in bulked samples of the same cultivar. The majority of those absent were rare bands, shared by less than 25% of individual plants. Replicate bulk samples gave almost identical banding patterns, demonstrating the robustness of the bulked AFLP technique. Cluster analysis of AFLP data derived from individual plants resulted in a phenogram similar to that produced from data derived from bulked samples of the same plants. AFLP analysis of bulked samples detected significant amounts of genetic variability among 52 cultivars and accessions with genetic similarity values ranging from 0.42 to 0.92. However, cluster analysis of AFLP data only partially reflected the geographic origin of cultivars and accessions and was not congruent with cluster analysis based on variation for morphophysiological characters. Bulked AFLP analysis provides a powerful tool for rapid assessment of genetic variability in white clover and may also be used for cultivar identification. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
X. L. Li    L. K. Liu    N. Hou    G. Q. Liu  C. G. Liu 《Plant Breeding》2005,124(4):413-415
‘Yi 4060’ is an elite restorer line of a non‐photoperiod‐sensitive D2‐type cytoplasmic male‐sterile (CMS) line of wheat. Random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were employed to map one major fertility‐restoring gene (D2Rf1) in ‘Yi 4060′. The sterile and fertile DNA pools were established from individuals in BC6, based on bulked segregant analysis. One RAPD marker E09, linked to D2Rf1, was converted to a SCAR marker and designated as E09‐SCAR865. The genetic distance between E09‐SCAR865 and D2Rf1 is 9.5 cM. Two SSR markers, Xgwm11 and Xgwm18, were also linked to a D2Rf1 and co‐segregated with E09‐SCAR865. The three molecular markers are useful in marker‐assisted breeding of the elite restorer lines for D2 ‐type CMS lines in wheat.  相似文献   

12.
Maize dwarf mosaic is one of the devastating and wide spread viral diseases in the world. The present investigation was carried out to develop DNA markers closely linked to the resistance gene mdm1 (t). Linkage between the markers and phenotypes was confirmed by analyzing an F2 population obtained from a cross between a resistant parent ‘Huangzaosi’ and a susceptible parent ‘Mo17(478)’. Four AFLP markers were found in the maize dwarf mosaic resistant plants. By using (BSA) bulked segregant analysis, two of the four AFLP markers were transformed into Sequence-characterized amplified regions markers (SCARs), nominated Rsun-1 and Rsun-2. The two amplified fragment length polymorphism (AFLP) markers, RHC-1and RHC-2, from the amplification products of primer combination E-AGC/M-CAA and E-AGC/M-GAA, showed linkage with the mdm1 (t) gene in a genetic distance 1.6 and 2.0 cM, respectively. The results indicate that the new SCAR markers will be valuable to distinguish resistant plants from susceptible plants in plantlets growing in seedbeds. The markers developed in this study are suitable for marker-assisted selection for maize dwarf mosaic resistance.  相似文献   

13.
Josef Patzak 《Euphytica》2003,131(3):343-350
In vitro meristem tissue cultures are used for production of virus-free rootstocks of hop (Humulus lupulus L.). Because use of plant tissue cultures is associated with occurrence of somaclonal variability, we assessed somaclonal variability in hop meristem in vitro cultures before and after thermotherapy by different molecular methods (RFLP, RAPD, STS, ISSR and AFLP) and compared it with existing clonal variability of Osvald's clones 31, 72 and 114. No molecular differences were observed between mother plants and in vitro mericlones by RFLP and STS analyses. Amplified molecular differences were found in RAPD and ISSR products of one from five in vitromericlones cvs. Eroica (E5) and Southern Brewer (SB2), respectively. Similarities with mother plants were 0.965 and 0.913 (JSC), respectively. Specific amplified polymorphic products were found for every mericlone and mother plant in AFLP reactions and variability of DNA sequence ranged from 0.824 to 0.993 (JSC). This variability was very similar to determined intra-clonal variability within Osvald's clones 31, 72 and 114 by AFLP analysis. Inter-clonal variability of DNA sequence was exactly higher than intra-clonal variability of DNA sequence in these clones. The molecular differences between Osvald's clone 72 normal and meristem derived were not verifiable. Thermotherapy increased frequency of molecular changes, since amplified differences were found in 14 from 20 in vitro mericlones of cv. Eroica, in 6 from 11 in vitro mericlones of cv. Yeoman and in 15 from 23 in vitro mericlones of cv. Southern Brewer by RAPD and ISSR analyses.  相似文献   

14.
Four inbred lines of carrot (cytoplasmic male‐steriles and corresponding maintainers) and eight of their F1 hybrids were studied with the amplified fragment length polymorphism (AFLP) technique to examine their genetic relationship and produce markers useful for testing hybrid seed purity. Eighty‐six polymorphic amplicons were identified in bulked DNA samples using eight primer pair combinations. Genetic distance was estimated on the basis of the presence or absence of polymorphic bands. The dendrogram plotted on the basis of the AFLP data closely represented the pedigree relationships of the lines and their hybrids. From one to six amplicons specific for a breeding line were identified. Most of them were also present in the DNA bulks of respective F1 hybrids. However, screening performed on individual plants of two parental lines and the corresponding hybrid indicated insufficient uniformity of parental lines, limiting the applicability of AFLP markers for testing hybrid seed purity.  相似文献   

15.
We have established marker-aided selection strategies for the two major Rf genes (Rf3 and Rf4) governing fertility restoration of␣cytoplasmic-genetic male sterility (CMS) in rice. Polymorphisms between restorer and non-restorer␣lines were observed using RG140/PvuII for Rf3 located on chromosome 1 and S10019/BstUI for Rf4 located on chromosome 10. DNA polymorphisms associated with these two loci in restorer lines of wild abortive (WA), Dissi, and Gambiaca cytoplasm are conserved, suggesting that similar biological processes control pollen fertility in this diverse cytoplasm. Because of their close linkage to Rf genes and distinct banding patterns, STS markers RG140/PvuII and S10019/BstUI are well suited for marker-aided selection, enhanced backcross procedures, and pyramiding of Rf genes in agronomically superior non-restorer lines. The combined use of markers associated with these two loci improved the efficiency of screening for putative restorer lines from a set of elite lines. Positional analyses of Rf4 and the inheritance pattern of the polymorphism in S10019/BstUI suggest that Rf4, governing fertility restoration in WA-CMS in rice, is likely to be the same gene governing fertility restoration in BT- and HL-CMS that has a gametophytic effect, which explains why 100% pollen fertility in hybrids is impossible to attain.  相似文献   

16.
Resistance to root-knot nematode (Meloidogyne incognita) is determined by a single major gene rkn1 in Gossypium hirsutum Acala NemX cotton. Bulked segregant analysis (BSA) combined with amplified fragment length polymorphism (AFLP) was used to identify molecular markers linked to rkn1. DNA pools from homozygous susceptible (S) and resistant (R) bulks of an F2:3 originating from the intraspecific cross NemX × SJ-2 were screened with 128 EcoR1/Mse1 primer combinations. Putative AFLP markers were then screened with 60 F2:7 RIL plants and four AFLP markers were found linked to rkn1. The linkage of AFLP markers to rkn1 was also confirmed in a F2 population. The closest AFLP marker was converted to a cleaved amplified polymorphic sequence (CAPS) marker (designated GHACC1) by aligning the sequences from both susceptible and resistant parents. GHACC1 linkage to rkn1 was confirmed in the F2 (1R:3S), F2:7 RIL (1R:1S) and the backcross population SJ-2 × F1 (NemX × SJ-2) (1 heterozygous: 1 homozygous). The four AFLP markers, GHACC1 plus two SSR markers (CIR316 and BNL1231) linked to rkn1 from previous work were mapped to intervals of 2.6–14.2 cM from the rkn1 locus, and the genomic region around rkn1 was spanned to about 28.2 cM in the F2:7 population. The PCR-based GHACC1 and CIR316 markers were tested on 21 nematode resistant and susceptible cotton breeding lines and cultivars. GHACC1 was suitable for nematode resistance screening within G.␣hirsutum, but not G. barbadense, whereas CIR316 was useful in both species, indicating their␣potential for utilization in marker-assisted selection.  相似文献   

17.
The orf138 gene, which is specific to Ogura male-sterile cytoplasm, was analysed in mitochondrial DNA (mtDNA) of the wild radish, Raphanus raphanistrum, by polymerase chain reaction (PCR), Southern hybridization and sequencing. The effect of R. raphanistrum cytoplasm on the expression of male sterility was also examined in progeny with R. sativus. A PCR-aided assay and Southern hybridization revealed that three out of six strains analysed included plants with orf138. The sequence of wild type orf138 was same as that of Ogura, except for one or two nucleotide substitutions. Southern hybridization showed a novel mtDNA configuration in R. raphanistrum, in addition to the normal and Ogura types identical to those in R. sativus. Among interspecific hybrids, all the F1 had normal pollen fertility. In the F2 progeny between female wild plants having orf138 and the maintainer of Ogura male sterility, male-sterile plants were segregated, fitting the ratio of 3 fertile: 1 sterile plant. R. raphanistrum has cytoplasm that induces male sterility in radishes, and contains a dominant fertility restorer gene.  相似文献   

18.
Y. Z. Xie    D. F. Hong    Z. H. Xu    P. W. Liu    G. S. Yang 《Plant Breeding》2008,127(2):145-149
A recessive epistatic genic male sterility (REGMS) two‐type line, 9012AB, has been used for rapeseed hybrid seed production in China. The male sterility of 9012AB is controlled by two recessive duplicate sterile genes (ms1 and ms2) interacting with one recessive epistatic suppressor gene (esp). Homozygosity at the esp locus (espesp) suppresses the expression of the recessive male sterility trait in homozygous ms1ms1ms2 ms2 plants. In this study, we used a combination of bulked segregant analyses and amplified fragment length polymorphism (AFLP) to identify markers linked to the suppressor gene in a BC1 population. From the survey of 1024 AFLP primer combinations, eight markers tightly linked to the target gene were identified. The two closest markers flanking both sides of Esp, P9M5370 and S16M14780, had a genetic distance of 1.4 cM and 2.1 cM, respectively. The AFLP fragment from P4M8190, which co‐segregated with the target gene was converted into a sequence characterized amplified region marker. The availability of linked molecular markers will facilitate the utilization of REGMS in hybrid breeding in Brassica napus.  相似文献   

19.
The AFLP (amplified fragment length polymorphism) technique has been applied in establishing an extended linkage map of sugar beet. A total of 120 AFLPs were integrated into an existing linkage map based on RFLP markers. Four primer combinations yielded between 19 and 40 polymorphic bands in an F2 population consisting of 94 plants. The AFLP loci were evenly distributed over the nine linkage groups, with the exception of linkage group V where the number of AFLPs was significantly low. The AFLPs were found to be reproducible even against the background of different combinations of Taq DNA polymerases and buffers. However, the quantity of higher molecular weight fragments (>400 bp) was reduced when using plant DNA of poor quality as a template. The results of these experiments are discussed, together with possible applications of AFLPs in sugar beet breeding.  相似文献   

20.
The columnar phenotype is a very valuable genetic resource for apple breeding because of its compact growth form determined by the dominant gene Co. Using bulked segregant analysis combined with several DNA molecular marker techniques to screen the F1 progeny of Spur Fuji × Telamon (heterozygous for Co), 9 new DNA markers (6 RAPD, 1 AFLP and 2 SSRs) linked to the Co gene were identified. A total of 500 10-mer random primers, 56 pairs of selective AFLP primers and 8 SSR primer pairs were screened. One RAPD marker S1142682, and the AFLP marker, E-ACT/M-CTA346, were converted into SCAR markers designated SCAR682 and SCAR216, respectively. These markers will enable early selection in progenies where Co is difficult to identify. The Co gene was located between the SSR markers CH03d11 and COL on linkage group 10 of the apple genetic linkage map. Finally, a local genetic map of the region around the Co gene was constructed by linkage analysis of the nine new markers and three markers developed earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号