首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Runoff is the key factor to understand the land degradation causing high risk of soil erosion and can reduce the water available for human societies and ecosystems. The dynamics of runoff and suspended sediment transport are not completely understood. In this study, we examined the trends, breaking point and regime changes for the runoff and sediment load at different temporal scales using 50 years of continuous observational data from a highly erodible sub‐catchment with an area of 7,325 km2 in the Beiluo River basin on the Loess Plateau, China. At the annual scale, the runoff and sediment load declined significantly (p < 0·05) with decreasing rates of −0·23 mm y−1 and −164·9 Mg km−2 y−1, respectively. Abrupt changes in the runoff and sediment load series were detected between 1979 and 1999; thus, the data were divided into intervals of 1960–1979, 1980–1999 and 2000–2009. The flow duration curve analysis indicated increasing low‐flow values and decreasing daily runoff and sediment discharge peaks, which suggested that soil and water conservation measures reduced the volume of runoff and the sediment load. This led to a more uniform runoff regime. At the flood event scale, we investigated the relationship between runoff and the suspended sediment load based on 123 flood events, which showed clearly that the magnitude and frequency of hyper‐concentrated sediment flows decreased in 2000–2009 compared with 1960–1999. The annual erosive rainfall exhibited non‐significant changes throughout the entire study period. We conclude that soil and water conservation measures (e.g. afforestation, grassing, terraces and check dams) have played major roles in the changes in runoff and the sediment load in the Beiluo River catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The AnnAGNPS model, widely utilized as a practical tool for addressing erosion problems and land use planning, was implemented in a small agricultural watershed located in central Belgium, to assess its prediction capacity of runoff, peak flow and sediment yield in humid temperate conditions. Model performance was evaluated at the event scale by using a database reporting hydrological, geomorphologic and land use data collected during a 2‐year period. Seventeen events were modelled and compared with the corresponding observations at the watershed outlet. The model performed well in predicting the largest runoff volumes, as shown by the high values achieved for the coefficients of efficiency (E = 0·89) and determination (r2 = 0·92). However, some events resulted in zero runoff simulation. The prediction capability for peak flow and sediment yield was poor (E = 0·35 and 0·16, respectively). This inaccuracy can have several causes: the internal model deficiencies may be due to the incomplete representation of watershed complex processes, while external problems may be related to the conditions within the modelled watershed and the quality of recorded data. On the whole the AnnAGNPS model may be considered as being suitable to simulate the significant runoff events in the experimental watershed. However, the model may be seen as better suited for comparative assessments of alternative management and policy scenarios and for gross estimation of nutrient loads rather than the precise prediction of a single event, consequently helping in the prediction of land degradation problems in the experimented conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of grazing and cultivation management on infiltration, runoff and sediment yield on storm basis were quantified for summer rangeland in the Matash mountains (Talesh Region), northern Iran. The infiltration experiments were made using double cylinder infiltrometer with five replicates within each study treatment. The runoff generation and sediment yield were measured using standard plots (1·83 m × 22·18 m) in three replications. The peak and the terminal instantaneous infiltration, and runoff and sediment rates were compared using independent and paired sample t‐test in two aforesaid treatments, respectively. The terminal and the peak instantaneous infiltration rates of 39·6 and 342·9 mm/h showed a respective significant increase (p < 0·001) of 32 and 39 per cent in cultivated areas compared to those in open grazing treatments. The results of runoff analysis also showed that there was a significant difference (p < 0·001) in runoff generation in two above‐mentioned areas. The runoff water was also found to be 5·63‐folds more in case of open grazing treatment in comparison with that generated by cultivated plots. A significant difference (p < 0·001) in sediment yield between two study treatments was also proved by the results obtained through sediment yield study. The soil loss in open grazing treatment was found to be 26·6 times more than of that occurred in cultivated plots. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Unpaved roads play an important role in soil loss in small watersheds. In order to assess the impact of these unpaved roads in the Loess Plateau of China, runoff and sediment yields from road‐related sources must be quantified. Field rainfall simulation experiments were conducted under three slope gradients and five rainfall intensities on unpaved loess roads in a small watershed. Results showed that the runoff generation was very fast in loess road surface (time to runoff < 1 min) and produced a high runoff coefficient (mean value > 0·8). Soil loss rates were decreased as surface loose materials were washed away during a rainstorm. Rainfall intensity, initial soil moisture, and slope gradient are key factors to model surface runoff and sediment yield. Soil loss on loess road surface could be estimated by a linear function of stream power (R2 = 0·907). Four commonly interrill erosion models were evaluated and compared, and the interrill erodibility adopted in the Water Erosion Prediction Project model was determined as 1·34 × 106 (kg s m−4). A new equation taking into account different parameters like rainfall intensity, surface flow discharge, and slope gradient was established. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The influence of land use on runoff and soil loss was assessed on two small watersheds in the Eastern Caribbean island of St Lucia, under contrasting land management regimes. The data generated from these watersheds revealed that the soil losses from an intensively cultivated agricultural watershed were 20‐times higher in magnitude than that of a forested watershed both for peak rainfall event and for total duration of analysis. This was due to higher surface runoff rates and exposure of soil to direct raindrop impact within cultivated areas. Whereas the forest canopy cover in combination with higher infiltration capacities of the forested land reduced the erosive runoff from the forest watershed and thus the soil loss. Moreover, the energy intensities of large storms in excess of 40 mm were estimated and found to range between 400 MJ mm ha−1 h−1 and 1834 MJ mm ha−1 h−1. 1
  • 1 Megajoules‐millimeters per hectare‐hour.
  • Soil loss from the agricultural watershed was strongly correlated (R2 = 0·85) to storm energy‐intensity (EI30). However, the correlation of soil loss with the EI30 (R2 = 0·71) was poor for the forest watershed due to the effect of canopy vegetation, which significantly reduced the energy of raindrop impact. Over the study period, cumulative soil losses were 10·0 t ha−1 for the agricultural site and 0·5 t ha−1 for the forest site. 2
  • 2 Metric tons per hectare.
  • The largest storm observed during the study period resulted in erosion losses of 3·78 t ha−1 and 0·2 t ha−1 from the agricultural and forest sites respectively. The regression models were developed using the measured data for prediction of runoff and soil loss over the watersheds of St Lucia under similar conditions. This study contributed towards efficient watershed management planning and implementation of suitable water conservation measures in St Lucia. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

    6.
    Impact assessments on river systems of the combined effect of bed and suspended sediment loads from quarries are difficult to find. In this study, bed and suspended loads were measured to determine the impact of a 20‐ha limestone quarry on the river system of its 5,000‐ha steep, diverse land use/land cover but mostly forested catchment. A network of hydrologic and sediment monitoring instruments was deployed over the catchment during two separate study periods when sediment loadings were measured from captured storms. Results showed that the quarry stood to make a disproportionately large contribution to the catchment's estimated 2·1 Mg ha−1 yr−1 suspended sediment load. Large storm events contributed most of the loadings with five events supplying 92% of total loadings at the outlet. A paired method approach to compare suspended sediment loads between two subcatchments showed that during eight storm events, the quarry yielded between 2 and 49·2 Mg ha−1 per event, whereas the forest never yielded more than 0·1 Mg ha−1. Furthermore, the contribution of sediments from the quarry to bed load was more than 75% at a section located 1·2 km downstream. Future management activities to reduce sediment and bed loads, not only from this catchment but also from all others with similar land use/land covers, should focus on improving quarry operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

    7.
    Changes in runoff and sediment loads are of great importance for the management of river basins and the implementation of soil and water conservation measures. This study compared the suspended sediment dynamics in the Huangfuchuan and Yanhe catchments on the Loess Plateau. Both annual runoff and sediment load displayed significant reductions from 1955 to 2012. The decreasing rates were −0·88 mm a−1 and −2·72 Mg ha−1 a−1 in the Huangfuchuan catchment, respectively, and ‐0.31 mm a−1 and −1·20 Mg ha−1 a−1 in the Yanhe catchment. A total of 183 and 195 events, respectively, were selected to assess the suspended sediment dynamics in both catchments during the periods of 1971–1989 and 2006–2012. The results showed a good linear relationship between the sediment yield and runoff depth in both catchments from 1971 to 1989 and a relatively worse relationship in the Yanhe catchment from 2006 to 2012. The magnitude and frequency of the hyper‐concentrated sediment flow obviously decreased in the 2000s compared with that between 1971 and 1989. A hysteresis analysis suggested that complex and counter‐clockwise loops were the dominant patterns. Various soil and water conservation measures (e.g., afforestation, grassing, terraces, and check dams) played a critical role in runoff and sediment load changes in both catchments. The two catchments showed obvious heterogeneities in runoff and sediment yield because of different lithologies, soil types, and vegetation. The results of this study provide valuable information on suspended sediment dynamics and could be used to improve soil erosion control measures on the Loess Plateau. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

    8.
    Revegetation of road cuts and fills is intended to stabilize those drastically disturbed areas so that sediment is not transported to adjacent waterways. Sediment has resulted in water quality degradation, an extremely critical issue in the Lake Tahoe Basin. Many revegetation efforts in this semiarid, subalpine environment have resulted in low levels of plant cover, thus failing to meet project goals. Further, no adequate physical method of assessing project effectiveness has been developed, relative to runoff or sediment movement. This paper describes the use of a portable rainfall simulator (RS) to conduct a preliminary assessment of the effectiveness of a variety of erosion‐control treatments and treatment effects on hydrologic parameters and erosion. The particular goal of this paper is to determine whether the RS method can measure revegetation treatment effects on infiltration and erosion. The RS‐plot studies were used to determine slope, cover (mulch and vegetation) and surface roughness effects on infiltration, runoff and erosion rates at several roadcuts across the basin. A rainfall rate of ≈60 mm h−1, approximating the 100‐yr, 15‐min design storm, was applied over replicated 0·64 m2 plots in each treatment type and over bare‐soil plots for comparison. Simulated rainfall had a mean drop size of ≈2·1 mm and approximately 70% of ‘natural’ kinetic energy. Measured parameters included time to runoff, infiltration, runoff/infiltration rate, sediment discharge rate and average sediment concentration as well as analysis of total Kjeldahl nitrogen (TKN) and dissolved phosphorus (TDP) from filtered (0·45 μm) runoff samples. Runoff rates, sediment concentrations and yields were greater from volcanic soils as compared to that from granitic soils for nearly all cover conditions. For example, bare soil sediment yields from volcanic soils ranged from 2–12 as compared to 0·3–3 g m−2 mm−1 for granitic soils. Pine‐needle mulch cover treatments substantially reduced sediment yields from all plots. Plot microtopography or roughness and cross‐slope had no effect on sediment concentrations in runoff or sediment yield. RS measurements showed discernible differences in runoff, infiltration, and sediment yields between treatments. Runoff nutrient concentrations were not distinguishable from that in the rainwater used. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

    9.
    Sediments deposited by (paleo) flash floods can hold valuable information on processes of environmental change, land degradation or desertification. In order to assess the suitability of flash flood deposits as proxies for land degradation, we monitored a representative gully segment in North Ethiopia (Ashenge catchment), investigated a sequence of alluvial debris fans downstream of this segment and dated a neighbouring subaquatic debris fan using short‐lived 210Pb isotope counting. During one rainy season (July–September 2014), we measured daily rainfall, peak discharge, bedload transport, suspended sediment load and sediment deposition rates. The data show that sediment deposition in the debris fans is significantly dependent on micro‐topography (net incision in micro‐channels) (p < 0·1) and position within the sequence (net incision farther away from the lake) (p < 0·05). As sediment transfer to the lake significantly depends on the balance between available water and sediment (ratio rainfall depth/bedload transport) (p < 0·05), we could reconstruct the hydro‐sedimentary evolution of the gully over the past half century and validate it with aerial photographs and semi‐structured interviews. The findings are consistent with the short‐lived isotope count results, indicating increased sediment supply from the 1970s onwards, when little amounts of clay were deposited in the lake (<5%), and a subrecent clear water effect that resulted in increased deposition rates of clay in the lacustrine debris fan. Overall, our analysis indicates that debris fan sediments can be used to estimate past environmental degradation rates, if the contemporary water and sediment behaviour is well understood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

    10.
    An accurate prediction of peak discharge in watersheds is critical not only for water resource management, but also for understanding the complex relationships of hydrological processes. In this study, a modified peak discharge formula based on the Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) model was developed by introducing rainfall intensity and soil moisture factors. The reliability of the proposed method was tested with data from 1464 storm events in 41 watersheds and was applied to 256 storm events in five remaining typical watersheds using the optimized parameters. The results indicate that the proposed method is highly accurate in terms of model efficiency, as determined by Nash–Sutcliffe efficiencies (NSEs) of 88.60%, 74.04%, and 90.12% during the calibration, validation, and application cases, respectively. Furthermore, it performed better than the original and modified CREAMS methods. Subsequently, using the parameters derived from the initial 41 watersheds and the runoff estimated using the modified Soil Conservation Service curve number (SCS–CN) method, the proposed method was used to predict the peak discharge from the last five typical watersheds. Large NSE (63.88–80.83%) and low root mean square error (RMSE) values (0.31–35.93 m3s-1) were obtained for the five watersheds. Overall, the proposed peak discharge model, combined with the modified SCS-CN method, may accurately predict event-based peak discharge and runoff for general applications under various hydrological and geomorphic conditions in the Loess Plateau region.  相似文献   

    11.
    Improved quantification is needed for long‐term soil organic carbon (SOC) transport in runoff at watershed scales. Coshocton wheel samplers were used to collect runoff samples from no‐till and chisel‐till watersheds in corn (Zea mays) and soybean (Glycine max) rotations over 13 years. Samples were analyzed for SOC, N, P, K, and soil losses. The SOC losses, ranging from 0 to 357 kg ha−1 event−1, were correlated (r2 = 0·80–0·94) in power law relationships with N, P, K, soil loss, and runoff. Two events occurring in corn when soybean and cover crop residue were present in no‐till had combined SOC transport of 460 kg ha−1, nearly double the no‐till losses of a previous 11‐year period and 20 times higher than chisel‐till in the same events. Infrequent, extreme transport events that are not well characterized empirically, particularly in no‐till, can strongly influence hydrologic C transport from agriculture watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

    12.
    The catchments in the western Rift Valley escarpment of northern Ethiopia are highly responsive in terms of hydro‐geomorphic changes. With deforestation, dense gully and scar networks had developed by the 1980s on the escarpment between the towns of Alamata and Korem, transporting huge amounts of runoff and sediment down to the fertile and densely populated Raya Valley. To reverse this problem, catchment‐scale rehabilitation activities were initiated in the mid‐1980s. In this study, we examine the major hydro‐geomorphic response of streams after catchment rehabilitation. Scar networks in 20 adjacent catchments were mapped on Google Earth imagery of 2005, and their density was explained in terms of its corresponding Normalized Difference Vegetation Index and slope gradient. Soil and water conservation measures and vegetation recovery have reduced discharge and sediment flow which in turn resulted in various hydro‐geomorphic changes. In a multiple regression analysis, scar density was negatively related with Normalized Difference Vegetation Index and positively with average gradient of very steep slopes (r2 = 0·53, p < 0·01, n = 20). The size and amount of sediment supply to streams decreased, and various channel adjustments occurred. Notably, previously braided streams have changed to single thread streams, lateral bars have been stabilized and stream channels are narrowing and incising. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

    13.
    Precipitation, discharge and suspended sediment concentrations were continuously measured during 10 years (1995–2004), at the Ca l'Isard sub-basin (1.32 km2) of the Vallcebre experimental catchments. Daily precipitation record is 22 years long. When the ranks of the events obtained with the diverse variables considered (precipitation depth, peak discharge, runoff depth, suspended sediment concentration and sediment load) were compared, the results confirmed the complexity of the response of the catchment and demonstrated that precipitation is an irregular criterion for ranking the main sediment transporting events. When the partial duration series corresponding to the 10% major events were analysed, daily precipitation, peak discharge and sediment concentration series showed good fits with log-normal distributions, but event precipitation, runoff and sediment load series needed bi-modal log-normal distributions. This behaviour may be attributed to the fact that event mass magnitudes depend not only on event intensity but also on its duration.  相似文献   

    14.
    This paper evaluates soil loss due to water erosion in an area of 32,362 ha with a predominant land use of vineyards (Alt Penedès–Anoia region, Catalonia, Spain). The Soil and Water Assessment Tool (SWAT) was used incorporating daily climatic data for the period 2000–2010 and also detailed soil and land use maps. Particular attention was given to the universal soil loss equation cover and management factor (C factor) of vineyards, with a minimum value of 0·15 being determined for this crop. The model was calibrated using daily flow data for the year 2010, which yielded satisfactory results. Even so, significant differences were obtained on days with high‐intensity rainfall events, when the model overestimated runoff and peak discharge. In these vineyards, the simulated average soil losses per sub‐basin ranged between 0·13 and 9·73 Mg ha−1 y−1, with maximum values of between 26·32 and 42·60 Mg ha−1 y−1 registered in fine‐loamy soils developed on unconsolidated Tertiary marls. Other findings were related to problems associated with SWAT calibration under Mediterranean conditions characterised by major climate variability and high‐intensity rainfall events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

    15.
    Development of improved soil erosion and sediment yield prediction technology is required to provide catchment stakeholders with the tools they need to evaluate the impact of various management strategies on soil loss and sediment yield in order to plan for the optimal use of the land. In this paper, a newly developed approach is presented to predict the sources of sediment reaching the stream network within Masinga, a large‐scale rural catchment in Kenya. The study applies the revised universal soil loss equation (RUSLE) and a developed hillslope sediment delivery distributed (HSDD) model embedded in a geographical information system (GIS). The HSDD model estimates the sediment delivery ratio (SDR) on a cell‐by‐cell basis using the concept of runoff travel time as a function of catchment characteristics. The model performance was verified by comparing predicted and measured plot runoff and sediment yield. The results show a fairly good relationship between predicted and measured sediment yield (R2=0·82). The predicted results show that the developed modelling approach can be used as a major tool to estimate spatial soil erosion and sediment yield at a catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

    16.
    为探究南方红壤区经长期水土流失治理小流域的水沙特征,该研究收集长汀县朱溪河小流域2017—2020年降雨及洪水水沙数据,通过冗余分析、多元逐步回归方程、含沙量-流量滞回曲线等方法进行分析。结果显示:(1)流域年洪水径流深和泥沙量分别为282.30~892.50 mm和35.80~179.50 t/km2,洪水事件的产沙模数集中在0~20.0 t/km2,但总泥沙量由大于5.0 t/km2的少数事件决定;(2)降雨量、30 mim的最大雨强和降雨侵蚀力是影响洪水径流泥沙的主要降雨特征,对径流、泥沙变化的解释度分别为68.99%和49.28%,通过主要径流特征估算泥沙量、平均含沙量和最大含沙量,拟合优度达0.624~0.870;(3)洪水事件共出现6种含沙量-流量滞回关系,其中线型出现频率(55%)最高,该类事件中含沙量随流量的变化具有分阶段特征,临界含沙量约为0.1 g/L。经过长期的水土流失治理,红壤区小流域的洪水泥沙量普遍较低,且主要受径流量影响,洪水事件的滞回关系表明流域的泥沙供应通常处于持续少量的状态,研究结果有助于揭示红壤区土壤侵蚀的发展趋势。  相似文献   

    17.
    This study aims to demonstrate that the SWAT model can be used to predict discharge and sediment yield values in reservoir contributing catchments helping also to define the main factors that determine sedimentation rates in semi‐arid Mediterranean environments. This aim was achieved by comparing SWAT simulation results with water flows (over 29 years) and sediment deposition (over 47 years) volumes collected (by a campaign of bathymetric surveys) in a Sicilian reservoir. The mean monthly runoff coefficient calculated for the period 1980–2008 was 0·17. The mean sedimentation volume in the reservoir during the period 1963–2009 was 51,000 m3 year−1. Field surveys and collection of spatially distributed databases of soil, topography and climate were carried out in order to characterize the contributing catchment. The SWAT model was applied to simulate sediment volumes cumulated over group of years as well as water flow volumes reaching annual and monthly the reservoir. The performance of the hydrological and erosion components of the model was evaluated by a combination of both summary and difference statistical measures after a sensitivity analysis and a calibration/validation process. The model was able to simulate observed runoff volumes at both annual and monthly scale. The mean sedimentation volume simulated by SWAT during the whole period was 8·1% lower than the value obtained by the bathymetric measurements (equal to 72·103 Mg) with very good values of the efficiency coefficient (equal to 0·91). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

    18.
    基于径流侵蚀功率概念建立流域能沙关系模型,可为长江流域泥沙变化精准模拟与水土保持规划提供技术支撑。该研究以长江典型流域及其典型小流域为研究对象,通过收集1965—2018年金沙江流域、嘉陵江流域和湘江流域3个典型流域逐日水沙数据以及万安和李子口2个典型小流域2014—2020年场次降水径流泥沙数据,采用径流侵蚀功率、径流量和降雨侵蚀力对比分析不同时空尺度水沙(径流量和输沙量)、雨沙(降雨侵蚀力和输沙量)和能沙(径流侵蚀功率和输沙量)关系的优劣性,解析能沙关系优越性,并识别能沙关系非一致性变化,从而改进能沙关系模型提高流域输沙量模拟精度。结果表明:1)长江流域3个典型流域及2个典型小流域,在绝大部分情况下能沙关系的表现总是优于水沙关系和雨沙关系,在场次、月和年尺度修正的决定系数最大值分别可达到0.94、0.87和0.54。2)对于不同时间尺度,其流量序列中任意2个流量乘积与输沙量的相关性较高时,第一个流量Q1分位点总是接近1且第二个流量Q2分位点在0.5附近或者高于0.5。基于径流侵蚀功率可以较为准确地计算不同时空尺度流域输沙量,具有明显适用性...  相似文献   

    19.
    The combination of runoff‐generating areas (saturated soils) and overland flow concentration in features such as drainage ditches makes sloping farmland vulnerable to soil erosion. The establishment of drainage ditches aims at draining the excess of water from the farmland, particularly in areas where soils are saturated in the rainy season. The hydrogeomorphic impacts on the farmland itself and on downstream areas need however also to be studied. Off site, downstream problems comprise higher peak discharges, leading to gully initiation, an increase in sediment load, and flooding problems. On‐site problems such as the development of the drainage ditches into (ephemeral) gullies are less documented, although they may be important, as illustrated in the Lake Tana Basin (Ethiopia). The similarities and interactions between ephemeral gully channels and drainage ditches have to be considered to better understand all effects of drainage. Drainage ditches are a potential source of conflict between farmers with different interests and power, as well as between upstream and downstream users. A case study on drainage ditches on sloping farmlands in the Lake Tana Basin showed that nine out of ten catchments had drainage densities by ditches ranging from 53 to 510 m ha−1. Drainage ditches were constructed with an average top width of 27 (±9) cm. A significant correlation was found between stone bund density (physical conservation structures) and ditch drainage density (R = −0·72), in line with the Ethiopian government's ban on drainage ditches in farmlands where stone bunds have been constructed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

    20.
    In the northern highlands of Ethiopia, establishment of exclosures to restore degraded communal grazing lands has been practiced for the past three decades. However, empirical data on the effectiveness of exclosures in restoring degraded soils are lacking. We investigated the influence of exclosure age on degree of restoration of degraded soil and identified easily measurable biophysical and management‐related factors that can be used to predict soil nutrient restoration. We selected replicated (n = 3) 5‐, 10‐, 15‐, and 20‐year‐old exclosures and paired each exclosure with samples from adjacent communal grazing lands. All exclosures showed higher total soil nitrogen (N), available phosphorus (P), and cation exchange capacity than the communal grazing lands. The differences varied between 2·4 (±0·61) and 6·9 (±1·85) Mg ha−1 for the total N stock and from 17 (±3) to 39 (±7) kg ha−1 for the available P stock. The differences in N and P increased with exclosure age. In exclosures, much of the variability in soil N (R2 = 0·64) and P (R2 = 0·71) stocks were explained by a combination of annual average precipitation, woody biomass, and exclosure age. Precipitation and vegetation canopy cover also explained much of the variability in soil N (R2 = 0·74) and P (R2 = 0·52) stocks in communal grazing lands. Converting degraded communal grazing lands into exclosures is a viable option to restore degraded soils. Our results also confirm that the possibility to predict the changes in soil nutrient content after exclosure establishment using regression models is based on field measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号