首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

2.
The recent adoption of conservation farming systems in the semi-arid Canadian prairies opens up the possibility of replacing the traditional fallow period with non-cereal crops (oilseeds, legumes). However, information on changes to soil water regimes by inclusion of these crops, especially in combination with zero tillage, is sparse. A study was initiated in 1984 on a sandy clay loam soil at Lethbridge, Alberta, to investigate the performance of winter wheat (Triticum aestivum L.) under conventional, minimum and zero tillage in monoculture and in 2-year rotations with fallow, canola (Brassica campestris L.) or lentils (Lens culinaris Medic.)/flax (Linum usitatissimum L.). Conventional tillage in the Lethbridge region is shallow cultivation (10 cm) with a wide-blade (sweep) cultivator. Continuous cropping greatly depleted soil water reserves, resulting in some crop failures. Averaged over 10 years, available water for establishment of winter wheat in fall was least after canola (45 mm), followed by continuous winter wheat (59 mm), lentils/flax (74 mm) and fallow (137 mm). In this semi-arid region, the effect of rotation on soil water was much greater than that of tillage. Zero tillage had relatively little impact on available water to 1.5 m depth. However, once the experiment had been established for 6–7 years, available water in the 0–15 cm depth under winter wheat in spring was greatest under zero tillage. Precipitation storage efficiency during the fallow year was generally unaffected by tillage system.  相似文献   

3.
The purpose of this work was to determine whether some soil physical and chemical properties, and microbial activity were affected by two conservation tillage systems in a Chernozemic clay loam soil (Vertic Argiudoll), after 5 years of trial initiation. Two crop sequences, corn (Zea mays L.)–wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merr.) and wheat/soybean, under chisel plowing (ChP) and no till (NT) were evaluated. Physical and chemical properties were also analyzed taking the same soil without disturbance as reference. The Hénin instability index (HI) was larger in ChP than in NT in both corn–wheat/soybean (C–W/S) and wheat/soybean (W/S) sequences (P≤0.05). The C–W/S sequence differed from W/S (P≤0.01) in total organic carbon (TOC). As regards organic carbon fractions, no differences were found in labile organic carbon (LOC), while W/S under ChP showed the lowest value (P≤0.01) of humified organic carbon (HOC). No differences were found in microbial respiration either in crop sequences or in tillage systems. Soil physical and chemical properties differentiated crop sequences and tillage treatments from the undisturbed soil when a Student’s t-test was performed. Five years elapsed since the beginning of this trial was time enough to detect changes in some of the soil properties as a consequence of management practices. An important reduction in the soil structural stability was observed as related to the undisturbed soil. However, the C–W/S sequence under NT resulted in lower soil degradation with respect to the other treatments.  相似文献   

4.
Southeastern USA production is limited in Acrisols (Paleudults and Kandiudults) because they have high strengths and low water holding capacities. Production systems with crop rotations or deep tillage before planting were compared with less intensive management. Production systems included double-crop wheat (Triticum aestivum L.) and soybean (Glycine max L. Merr.) that were drilled in 0.19 m-row widths and grown in 15 m wide, 150 m long plots with soils of varying hardpan depths. Treatments included surface tillage (disked or none), deep tillage (paratilled or none), deep tillage with winter fallow and maize (Zea mays L.) in rotation, and disked/deep tillage with an in-row subsoiler where soybean was planted in conventional 0.76 m-wide rows. Cone indices were measured near the ends of each plot (120 m apart) to assess soil strength differences among soil types and among treatments. Cone indices were 1.50 MPa higher for non-deep tilled treatments than for deep tilled treatments and 0.44 MPa higher in wheel-track mid rows than in non-wheel-track mid rows. Cone indices were also 0.28 MPa higher for soils with shallower Bt horizons. Cone indices were not significantly different for subsoiled treatments and paratilled treatments. Rainfall was erratic throughout the 5-year experiment with dry periods lasting more than 2 weeks at a time and with annual totals ranging from 520 to 1110 mm. Wheat yields were 0.67 Mg ha−1 greater for deep-tilled soils (subsoiled and paratilled) than for non-deep-tilled soils. Soybean yields were 0.36 Mg ha−1 greater for paratilled than for subsoiled or non-deep-tilled treatments partly as a result of the more complete disruption of the paratill and partly because paratilled treatments were managed with narrow rows. Yields did not vary significantly among the soil types despite the fact that they had different cone indices. Tillage was a more dominant factor than soil type. For wheat, lower cone indices from tillage led to higher yields. For soybean, management of uniform loosening from deep tillage and narrow rows led to higher yields.  相似文献   

5.
The study on energy-use efficiency and economics of soybean based cropping system, viz., soybean–wheat (Glycine max 9 L., Triticum aestivum L. emend. Fiori & Paol.), soybean–lentil (Lens culinaris Medicus) and soybean–field pea (Pisum sativum L., sensu lato), was carried out at the Hawalbagh experimental farm of Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India during 2001–2003 (29°36′ N, 79°40′ E). These cropping systems, under rainfed conditions, were evaluated with different tillage management practices, viz., zero tillage (ZT), minimum tillage (MT) and conventional tillage (CT). Each tillage management practice, under each cropping system was evaluated for total energy output, energy input–output ratio, gross income, net income and marginal income, to variable cost of cultivation. Results revealed that the maximum energy was consumed in terms of chemical fertilizers, followed by seed and plant protection chemicals, in all cropping systems. Equivalent energy was used from literature for conversion purpose. The maximum output energy was observed in CT (44,253 MJ/ha), followed by MT for soybean–lentil cropping system (43,450 MJ/ha). The output–input energy ratio was maximum in ZT for soybean–lentil (4.9) followed by MT for soybean–pea cropping system (4.6). The economic analysis also revealed that the maximum benefits could be obtained from these sequences. Conventional tillage for all cropping sequences was found to be a better option as compared to minimum tillage and zero tillage. Benefit–cost ratios were higher in conventional tillage in all the three cropping systems. However, from the point of energy saving or cost reduction, zero tillage and minimum tillage may be considered depending on resources.  相似文献   

6.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

7.
There has been a trend toward increased cropping intensity and decreased tillage intensity in the semiarid region of the Canadian prairies. The impact of these changes on sequestration of atmospheric CO2 in soil organic carbon (C) is uncertain. Our objective was to quantify the changes in total, mineralizable and light fraction organic C and nitrogen (N) due to the adoption of continuous cropping and conservation tillage practices. We sampled three individual long-term experiments at Lethbridge, Alberta, in September 1992: a spring wheat (Triticum aestivum L.)-fallow tillage study, a continuous spring wheat tillage study and a winter wheat rotation-tillage study. Treatments had been in place for 3–16 years. In the spring wheat-fallow study, different intensities (one-way disc > heavy-duty cultivator > blade cultivator) of conventional tillage (CT) were compared with minimum tillage (MT) and zero tillage (ZT). After 16 years, total organic C was 2.2 Mg ha−1 lower in more intensively worked CT treatments (one-way disc, heavy-duty cultivator) than in the least-intensive CT treatment (blade cultivator). The CT with the blade cultivator and ZT treatments had similar levels of organic C. The CT treatments with the one-way disc and heavy-duty cultivator had light fraction C and N and mineralizable N amounts that were about 13–18% lower than the CT with the blade cultivator, MT or ZT treatments. In the continuous spring wheat study, 8 years of ZT increased total organic C by 2 Mg ha−1, and increased mineralizable and light fraction C and N by 15–27%, compared with CT with a heavy-duty cultivator prior to planting. In the winter wheat rotation-tillage study, total organic C was 2 Mg ha−1 higher in a continuous winter wheat (WW) rotation compared with that in a winter wheat-fallow rotation. The lack of an organic C response to ZT on the WW rotation may have been due to moldboard plowing of the ZT treatment in 1989 (6 years after establishment and 3 years before soil sampling), in an effort to control a severe infestation of downy brome (Bromus tectorum L.). Our results suggest that although relative increases in soil organic matter were small, increases due to adoption of ZT were greater and occurred much faster in continuously cropped than in fallow-based rotations. Hence intensification of cropping practices, by elimination of fallow and moving toward continuous cropping, is the first step toward increased C sequestration. Reducing tillage intensity, by the adoption of ZT, enhances the cropping intensity effect.  相似文献   

8.
Crop management practices have potential to enhance subsoil C and N sequestration in the southern U.S., but effects may vary with tillage regime and cropping sequence. The objective of this study was to determine the impacts of tillage and soybean cropping sequence on the depth distribution of soil organic C (SOC), dissolved organic C (DOC), and total N after 20 years of treatment imposition for a silty clay loam soil in central Texas. A continuous soybean monoculture, a wheat–soybean doublecrop, and a sorghum–wheat–soybean rotation were established under both conventional (CT) and no tillage (NT). Soil was sampled after soybean harvest and sectioned into 0–5, 5–15, 15–30, 30–55, 55–80, and 80–105 cm depth intervals. Both tillage and cropping intensity influenced C and N dynamics in surface and subsurface soils. No tillage increased SOC, DOC, and total N compared to CT to a 30 cm depth for continuous soybean, but to 55 cm depths for the more intensive sorghum–wheat–soybean rotation and wheat–soybean doublecrop. Averaged from 0 to 105 cm, NT increased SOC, DOC, and total N by 32, 22, and 34%, respectively, compared to CT. Intensive cropping increased SOC and total N at depths to 55 cm compared to continuous soybean, regardless of tillage regime. Continuous soybean had significantly lower SOC (5.3 g kg−1) than sorghum–wheat–soybean (6.4 g kg−1) and wheat–soybean (6.1 g kg−1), and 19% lower total N than other cropping sequences. Dissolved organic C was also significantly higher for sorghum–wheat–soybean (139 mg C kg−1) than wheat–soybean (92 mg C kg−1) and continuous soybean (100 mg C kg−1). The depth distribution of SOC, DOC, and total N indicated treatment effects below the maximum tillage depth (25 cm), suggesting that roots, or translocation of dissolved organic matter from surface soils, contributed to higher soil organic matter levels under NT than CT in subsurface soils. High-intensity cropping sequences, coupled with NT, resulted in the highest soil organic matter levels, demonstrating potential for C and N sequestration for subsurface soils in the southern U.S.  相似文献   

9.
Although reduced tillage (RT) may preserve soil biota and improve the productivity and sustainability of arable lands in temperate regions, the extension of RT is limited by difficulties in controlling weeds. We studied the effect of RT without herbicide application on weed communities and soil biota in a 1-year 2-crop rotation system with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) on Andosols in Japan. RT of the surface 3 cm and conventional moldboard plowing (CT) were conducted before seeding twice per year. For the first 3 years, from autumn 1997 to spring 2000, one field was managed with RT and another with CT. For the second 3 years, from autumn 2000 to spring 2003, RT and CT were conducted in two replicated plots in each field. Weed communities and soil biota were studied in the last 2 years. Dominant weed species in winter wheat cropping were Italian ryegrass (Lolium multiflorum Lam.) in 2002 and common vetch (Vicia angustifolia L.) in 2003, and their biomass was high where RT or CT was continuously conducted. Switching of tillage methods, from RT to CT or vice versa, reduced the biomass of winter weeds. In summer maize cropping, several annual and perennial weed species tended to increase under RT in the second 3 years. However, redroot pigweed (Amaranthus retroflexus L.), the most dominant weed in 2002 and 2003, responded to tillage inconsistently and its biomass was not always increased by RT. Species diversity of winter weeds was decreased by CT conducted in the first 3 years, and that of summer weeds was decreased by CT conducted in the second 3 years. The seedbank in the 0–10-cm soil layer under recent RT was large (7200–16 300 seeds m−2) compared with that under CT (2900–7300 seeds m−2). The microbial substrate-induced respiration (SIR) and the population densities of nematodes and mites were higher under RT in the second 3 years and were not affected by previous tillage practices. Both were highly correlated with soil total nitrogen. The positive effect of RT on these soil organisms was primarily attributable to the accumulation of organic matter in soil, but not to plant cover as a result of incomplete weed control by RT. Occasional adoption of RT in current CT systems may be effective at enriching soil organisms with little risk of weed infestation.  相似文献   

10.
This paper describes how the CERES-Wheat simulation model can be used to estimate tillage effects on soil water regimes of a silty clay soil in Foggia, Southern Italy. The four tillage treatments compared are traditional mouldboard ploughing, ripper subsoiling, surface disc-harrowing and minimum tillage with rotary hoeing under continuous durum wheat cropping. For each tillage treatment the CERES-Wheat model was used to calculate the water balance for several layers in the root zone.

The water balance routine of the model estimates the water content within saturation and the lower limit at any time. Inputs required by the model are some basic information about the site, weather, genetic parameters and management practices as well as some soil properties, such as albedo, bulk density, organic matter and N contents. The model was calibrated by estimating the genetic parameters for the minimum tillage treatment in the season 1984–1985. The same set of parameters was used for the subsequent validation procedure. Statistical tests proved that the match between measured and simulated soil water content values was quite good. The simulation results also showed some differences among different tillage treatments. The model predicted the lowest plant extractable soil water values and a different water content distribution along the soil profile of the ripper subsoiling in comparison with the other tillage treatments. The soil water content was lower until 20–40 cm depth and higher at 40–60 cm depth in the ripper treatment as compared with the others. In deeper layers differences became non-significant. This might be due to the cracks produced by the ripper through which rainfall infiltrated in deep layers.  相似文献   


11.
The effect of winter weed control (WWC) management on 14C-atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) mineralization was investigated in an Entic Haplustoll in Argentina. Three WWC managements were selected: Chemical Fallow (CF) and Cereal Cover Crop (CCC), both under no-tillage, and Reduced Tillage (RT) with chisel and moldboard plow. Soil was sampled at two depths: 0–5 and 5–10 cm, to evaluate the soil stratification induced by the tillage system. To distinguish differences in atrazine degradation in soils with and without previous history of atrazine application two crop sequences were selected: continuous soybean [Glycine max L., Merr.] (CS) without previous atrazine exposure, and soybean–maize (Zea mays L.) rotation (SM) with atrazine application every winter and in alternate springs. The release of 14C-CO2 during laboratory incubations of soils treated with ring labelled 14C-atrazine was determined. Soil organic matter (SOM) distribution was determined with depth and among three soil size fractions: 200–2000 μm, 50–200 μm and <50 μm. Previous atrazine application enhanced atrazine degrading microorganims. Atrazine mineralization was influenced by both WWC management and the tillage system. Chemical fallow showed the highest atrazine mineralization in the two crop sequences. Depth stratification in atrazine degradation was observed in the two WWC treatments under the no-tillage. Depth stratification in the content of soil organic C and relative accumulation of organic C in coarsest fractions (200–2000 and 50–200 μm) were observed mainly in no-till systems. Depth stratification of atrazine degrading activity was mainly correlated to the stratification of fresh organic matter associated with the coarsest fractions (200–2000 μm). Atrazine persistence in soil is strongly affected by soil use and management, which can lead to safe atrazine use through selection of appropriate agricultural practices.  相似文献   

12.
Crop management practices, especially tillage and rotation, can impact soil nutrient stratification, crop growth, and yield. The objectives of this study were to determine the soil-profile distribution of plant-available nutrients in four depth intervals from 0 to 90 cm for different cotton (Gossypium hirsutum L.) cropping systems, tillage regimes, and N fertilization rates in a south-central Texas silty clay loam soil after 5 years of treatment imposition. Distribution of nutrients in the soil profile varied between cropping systems (continuous cotton monoculture and cotton–corn (Zea mays L.) rotation), conventional (CT) and reduced tillage (RT), and N fertilization rates (0, 80, and 160 kg N ha−1). Plant-available P showed the greatest stratification and was 426% higher at 0–15 cm than at 60–90 cm, while SO4 had the greatest increase (42%) with depth. The percentage decrease from 0–15 to 60–90 cm was 47% and 147% for NO3 and K, and 76%, 12%, 43%, and 232% for Mn, Fe, Cu, and Zn, respectively. In contrast, Ca and Mg concentrations increased 22% and 15%, respectively, from 0–15 to 60–90 cm. Increasing the N fertilization rate increased plant-available NO3 and SO4 but decreased K, Fe, Cu, and Zn concentrations. Inclusion of corn in rotation with cotton decreased plant-available Mn, Fe, and Cu from 15 to 90 cm relative to continuous cotton at 160 kg N ha−1. For unfertilized soil, rotation increased micronutrient concentrations at 15–60 cm compared to continuous cotton. On average, CT cotton–corn had significantly lower K, Ca, Mg, Na, and SO4 concentrations than CT continuous cotton. Reduced tillage and diversified cropping systems altered the distribution of plant-available nutrients in soil relative to CT and continuous cotton. In fact, RT increased plant-available P and NO3 in surface soil, which may have contributed to higher lint yields than CT continuous cotton.  相似文献   

13.
Poor soil tilth is a major constraint in realizing optimum yield potential of wheat (Triticum aestivum L.) in rice (Oryza sativa L.)–wheat cropping system. The effect of long-term additions of lantana (Lantana spp. L.) biomass, a wild sage, on physical properties of a silty clay loam soil under rice–wheat cropping was studied in north-west India. Lantana was added to soil 10–15 d before puddling at 10, 20 and 30 Mg ha−1 yr−1 (fresh weight). At the end of 10th rice crop, liquid limit, plastic limit, shrinkage limit and plasticity index of soil increased significantly with lantana additions. The friability range of lantana-treated soil decreased from 8.9 to 7.8–8.2% gravimetric-moisture content, but soil became friable at relatively higher moisture content. Soil cracking changed from wide, deep cracks in hexagonal pattern to a close-spaced network of fine cracks. The cracks of sizes <5 mm increased, 10–20 mm and wider decreased, while 5–10 mm remained almost unchanged with lantana additions. The volume density of cracks decreased by 36–76% and surface area density by 19–37% compared with control. The clods of sizes <2 cm diameter increased, while 2–4 cm and 4–6 cm diameter decreased with lantana additions. The MWD of clods varied between 2.15 and 2.34 cm in lantana-treated soil as against 2.83 cm in the control. The bulk density and breaking strength of soil clods were lower in lantana-treated soil by 4–9% and 29–42% than in the control. About 23–47% less energy was required to prepare seed-bed in lantana-treated than in the control soil.  相似文献   

14.
Abstract

The impact of conservation tillage, crop rotation, and cover cropping on soil‐quality indicators was evaluated in a long‐term experiment for cotton. Compared to conventional‐tillage cotton, other treatments had 3.4 to 7.7 Mg ha?1 more carbon (C) over all soil depths. The particulate organic matter C (POMc) accounts for 29 to 48 and 16 to 22% of soil organic C (SOC) for the 0‐ to 3‐and 3‐ to 6‐cm depths, respectively. Tillage had a strongth influence on POMc within the 0‐ to 3‐cm depth, but cropping intensity and cover crop did not affect POMc. A large stratification for microbial biomass was observed varing from 221 to 434 and 63 to 110 mg kg?1 within depth of 0–3 and 12–24 cm respectively. The microbial biomass is a more sensitive indicator (compared to SOC) of management impacts, showing clear effect of tillage, rotation, and cropping intensity. The no‐tillage cotton double‐cropped wheat/soybean system that combined high cropping intensity and crop rotation provided the best soil quality.  相似文献   

15.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

16.
An experiment was conducted to determine the effects of three tillage systems on crop yield in a winter wheat-vetch (Vicia sativa L.) rotation during 3-year growing seasons on a clay-loam soil in the northwest region of Turkey. The three tillage treatments were: (1) conventional tillage (CT); (2) shallow tillage (ST); (3) double disk tillage (DD).The wheat grain yield was significantly affected by tillage when averaged across years. The highest wheat grain yield was obtained with shallow tillage treatment. The year affected wheat grain yield significantly, mainly due to the distribution of rainfall through the growing season and probably due to the wheat-vetch rotation. Heads density and head length increased significantly with shallow tillage when compared with conventional tillage. Tillage practices had no significant influence on thousand kernel weight. Results from this study indicated that for a dryland wheat-vetch rotation cropping system, shallow tillage had higher wheat grain yields than that obtained from conventional tillage. Furthermore, mouldboard ploughing tillage in this crop rotation could be replaced by shallow tillage that would increase yield and would be likely to improve soil properties in the long-term. On the other hand, double disk tillage proved to be a promising soil management practice to improve vetch grain yield when compared with conventional tillage.  相似文献   

17.
Yield decline or stagnation and its relationship with soil organic matter fractions in soybean (Glycine max L.)–wheat (Triticum aestivum L.) cropping system under long-term fertilizer use are not well understood. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in an Alfisol (Typic Haplustalf) at a long-term experiment at Birsa Agricultural University, Ranchi, India. For 30 years, the following fertilizer treatments were compared with undisturbed fallow plots (without crop and fertilizer management): unfertilized (control), 100% recommended rate of N, NP, NPK, NPK+ farmyard manure (FYM) and NPK + lime. Yield declined with time for soybean in control (30 kg ha−1 yr−1) and NP (21 kg ha−1 yr−1) treatments and for wheat in control (46 kg ha−1 yr−1) and N (25 kg ha−1 yr−1) treatments. However, yield increased with time for NPK + FYM and NPK + lime treatments in wheat. At a depth of 0–15 cm, small macroaggregates (0.25–2 mm) dominated soil (43–61%) followed by microaggregates (0.053–0.25 mm) with 13–28%. Soil microbial biomass carbon (SMBC), nitrogen (SMBN) and acid hydrolysable carbohydrates (HCH) were greater in NPK + FYM and NPK + lime as compared to other treatments. With three decades of cultivation, C and N mineralization were greater in microaggregates than in small macroaggregates and relatively resistant mineral associated organic matter (silt + clay fraction). Particulate organic carbon (POC) and nitrogen (PON) decreased significantly in control, N and NP application over fallow. Results suggest that continuous use of NPK + FYM or NPK + lime would sustain yield in a soybean–wheat system without deteriorating soil quality.  相似文献   

18.
Increased use of conservation tillage is being considered as a way to sequester atmospheric C in the soil. However, little information exists on the effect of rotation and its interaction with tillage on soil organic carbon (SOC). A research trial with combinations of rotations and tillage treatments was sampled 20 years after its establishment to assess the effects on SOC sequestration in a typic Hapludalf in southern Ontario, Canada. The cropping treatments included continuous corn (zea mays L.), six rotations comprised of 2 years of corn following 2 years of another crop or crop sequence, and continuous alfalfa (Medicago sativa L.). Each rotation was split into either fall moldboard plow (MP) or fall chisel plow (CP) treatments. Continuous alfalfa was plowed and replanted every 4 years. Soil samples were taken incrementally to a depth of 40 cm and SOC and bulk density determined. The average SOC concentration (0–40 cm) was greatest in continuous alfalfa (18.0 g C kg−1). The treatments of soybean (Glycine max L.Merr.)+winterwheat (Triticum aestivum L.) or barley+barley (Trifolium pratense L.) (interseeded with red clover) followed by 2 years of corn had higher SOC concentrations (17.2–17.3 g C kg−1) than continuous corn and the treatments of 2 years of corn following 2 years of alfalfa or soybean (16.4–16.5 g C kg−1). The rotation of 2 years of barley followed by 2 years of corn had the lowest SOC concentrations (15.2 g C kg−1). On an equivalent mass basis, the rotations of soybean+winterwheat or barley+barley (underseeded with red clover) followed by 2 years of corn, had 2–9 Mg ha−1 more C than the other corn-based rotations. Including red clover in the winter wheat seemed to accelerate the rate of C mineralization compared to winter wheat without red clover; whereas interseeding red clover with barley increased SOC contents compared to excluding red clover in the barley rotation. More SOC was found in the top 10 cm and less in the 10–20 cm depth of the CP than in the MP soils. However, the CP did not increase the SOC content (0–20 cm) above that of MP indicating that this form of reduced tillage did not increase C sequestration in any of the rotations on this soil.  相似文献   

19.
This study was carried out in experimental plots established at Marcos Juárez, in the Pampean Region (center of Argentina) on Typic Argiudolls, with high silt content. The aim of this work was to study the effects of two tillage systems (reduced tillage and no-tillage) on the amount of total organic C, potentially mineralizable C, C released by respiration, and C stock in the topsoil of a corn (Zea mays L.)–wheat (Triticum aestivum L.)/soybean (Glycine max L. Merr.)–soybean rotation. No-tillage showed C stock greater than reduced tillage only at 0–5 cm depth, but not at 0–20 cm, even though in situ respiration was lower. As a consequence, no tillage did not show a differential capacity for C sequestration in comparison with reduced tillage.  相似文献   

20.
Soil quality in rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping systems is governed primarily by the tillage practices used to fulfill the contrasting soil physical and hydrological requirements of the two crops. The objective of this study was to develop a soil quality index (SQI) based on bulk density (BD), penetration resistance (PR), water stable aggregates (WSA) and soil organic matter (OM) to evaluate this important cropping system on a Vertisol in India. Regression analysis between crop yield and SQI values for various tillage and crop residue management treatments indicated SQI values of 0.84–0.92, 0.88–0.93 and 0.86–0.92 were optimum for rice, wheat and the combined system (rice + wheat), respectively. The maximum yields for rice and wheat were 5806 and 1825 kg ha−1 occurred at SQI values of 0.85 and 0.99, respectively. Using zero tillage (ZT) for wheat had a positive effect on soil quality regardless of the treatments used for rice. Regression analyses to predict sustainability of the various tillage and crop residue treatments showed that as puddling intensity for rice increased, sustainability without returning crop residues decreased from 6 to 1 years. When residue was returned, the time for sustainable productivity increased from 6 to 15 years for direct seeded rice, 5 to 11 years with low-intensity puddling (P1) and 1 to 8 years for high-intensity (P2) puddling. For sustainability and productivity, the best practice for this or similar Vertisols in India would be direct seeding of rice with conventional tillage and residues returned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号