首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Treatment of a soil under permanent pasture with carbaryl (a broad spectrum carbamate biocide) resulted in a 2-fold increase in the volume of surface runoff. This was attributed to a 3-fold reduction in infiltration rate as a result of litter accumulation at the soil surface in the absence of surface-casting earthworm activity. The amounts of dissolved inorganic P (DIP), NH+4-N, and NO?3-N in surface runoff from pasture treated with carbaryl (1.18, 9.53 and 4.25 kg ha?1 yr?1, respectively) were appreciably greater than those from untreated pasture (0.31, 1.63 and 0.52 kg ha?1 yr?1). This was attributed to the large amounts of DIP, NH+4-N, and NO?13-N released from decomposing litter. Following incubation at 4°C for 18 days the release of DIP, NH+4-N and NO?3-N from litter was 160, 1600 and 950 μg g?1, respectively. Losses of particulate P and sediment in surface runoff were lower in the absence (0.31 and 290 kg ha?1 yr?1, respectively) than in the presence (0.56 and 1120 kg ha? yr?1) of surface casts, pointing to the importance of surface casts as a source of sediment. Surface casts accounted for 45 and 75%, respectively, of the annual loading of particulate P and sediment in surface runoff. Nevertheless, the total loss in surface runoff of P and N forms was increased substantially when the production of earthworm casts was eliminated  相似文献   

2.
Yield and N uptake of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annuum L.) crops in five successive rotations receiving two compound fertilizers (12-12-17 and 21-8-11 N-P2O5-K2O) were studied to determine 1) crop responses, 2) dynamics of NO3-N and NH4-N in different soil layers, 3) N balance and 4) system-level N efficiencies. Five treatments (2 fertilizers, 2 fertilizer rates and a control), each with three replicates, were arranged in the study. The higher N fertilizer rate, 300 kg N ha-1 (versus 150 kg N ha-1), returned higher vegetable fruit yields and total aboveground N uptake with the largest crop responses occurring for the low-N fertilizer (12-12-17) applied at 300 kg N ha-1 rather than with the high-N fertilizer (21-8-11). Ammonium-N in the top 90 cm of the soil profile declined during the experiment, while nitrate-N remained at a similar level throughout the experiment with the lower rate of fertilizer N. At the higher rate of N fertilizer there was a continuous NO3-N accumulation of over 800 kg N ha-1. About 200 kg N ha-1 was applied with irrigation to each crop using NO3-contaminated groundwater. In general, about 50% of the total N input was recovered from all treatments. Pepper, relative to tomato, used N more efficiently with smaller N losses, but the crops utilized less than 29% of the fertilizer N over the two and a half-year period. Local agricultural practices maintained high residual soil nutrient status. Thus, optimization of irrigation is required to minimize nitrate leaching and maximize crop N recovery.  相似文献   

3.
Fate of fertilizer nitrogen.   总被引:3,自引:0,他引:3  
Results are presented from a three year lysimeter investigation, employing single (15NH4NO3) and double (15NH415NO3) labelled ammonium nitrate to study the uptake of soil and fertilizer nitrogen by cut ryegrass at 250, 500 and 900 kg N ha?1 a?1. Average annual recoveries of nitrogen were equivalent to 99,76 and 50% of the nitrogen added at 250, 500 and 900 kg N ha?1, respectively. At 250 kg N ha?1 the difference between the overall nitrogen recovery and the fertilizer recovery was almost entirely attributable to pool substitution resulting from mineralization/immobilization turnover (MIT). At 900 kg N ha?1 both the low overall recovery of nitrogen and the low fertilizer recovery reflected the large excess of available nitrogen over crop requirements. No evidence of ‘priming’ was obtained. Analysis of the results from single and double labelled lysimeters using simultaneous equations indicated that at 250 kg N ha?1,~70% of the nitrogen in the crop was derived from the ammonium pool. At 500 kg N ha?1 this dropped to 64%, while at 900 kg N ha?1 the figure was 59%. There was a suggestion that at the lower application rates, preferential uptake of ammonium was occurring but that as N supply exceeded crop requirements, nitrate was the major N source. Despite the preferential exploitation of the ammonium pool, at 250 and 500 kg N ha?1 pool substitution resulting from MIT resulted in lower recoveries of fertilizer ammonium compared with fertilizer nitrate.  相似文献   

4.
A long-term field experiment was conducted for 8 years on a Vertisol in central India to assess quantitatively the direct and residual N effects of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter in a soybean–wheat rotation. After cultivation of soybean each year, its aerial residues were removed before growing wheat in the same plots using four N levels (120, 90, 60 and 30 kg ha?1) and Azotobacter inoculation. Inoculation of soybean increased grain yield by 10.1% (180 kg ha?1), but the increase in wheat yields with inoculation was only marginal (5.6%; 278 kg ha?1). There was always a positive balance of soil N after soybean harvest; an average of +28 kg N ha?1 yr?1 in control (nodulated by native rhizobia) plots compared with +41 kg N ha?1 yr?1 in Rhizobium-inoculated plots. Residual and direct effects of Rhizobium and Azotobacter inoculants caused a fertilizer N credit of 30 kg ha?1 in wheat. Application of fertilizers or microbial inoculation favoured the proliferation of rhizobia in crop rhizosphere due to better plant growth. Additional N uptake by inoculation was 14.9 kg N ha?1 by soybean and 20.9 kg N ha?1 by wheat crop, and a gain of +38.0 kg N ha?1 yr?1 to the 0–15 cm soil layer was measured after harvest of wheat. So, total N contribution to crops and soil due to the inoculants was 73.8 kg N ha?1 yr?1 after one soybean–wheat rotation. There was a total N benefit of 13.8 kg N ha?1 yr?1 to the soil due to regular long-term use of microbial inoculants in soybean–wheat rotation.  相似文献   

5.
Use of nitrogen (N) fertilizer is underway to increase in Sub-Saharan Africa (SSA). The effect of increasing N rates on ammonia (NH3) volatilization—a main pathway of applied-N loss in cropping systems—has not been evaluated in this region. In two soils (Alfisols, ALF; and Andisols, AND) with maize crop in the East African highlands, we measured NH3 volatilization following urea broadcast at six rates (0–150 kg N ha?1) for 17 days, using a semi-open static chamber method. Immediate irrigation and urea deep placement were tested as mitigation treatments. The underlying mechanism was assessed by monitoring soil pH and mineral N (NH4+ and NO3?) concentrations. More cumulative NH3-N was volatilized in ALF than in AND at the same urea-N rate. Generally, higher urea-N rates increased proportional NH3-N loss (percent of applied N loss as NH3-N). Based on well-fitted sigmoid models, simple surface urea application is not recommended for ALF, while up to 60 kg N ha?1 could be adopted for AND soils. The susceptibility of ALF to NH3 loss mainly resulted from its low pH buffering capacity, low cation exchange capacity, and high urease activity. Both mitigation treatments were effective. The inhibited rise of soil pH but not NH4+ concentration was the main reason for the mitigated NH3-N losses, although nitrification in the irrigation treatment might also have contributed. Our results showed that in acidic soils common to SSA croplands, proportional NH3-N loss can be substantial even at a low urea-N rate; and that the design of mitigation treatments should consider the soil’s inherent capacity to buffer NH3 loss.  相似文献   

6.
Nutrient content and pH of precipitation samples collected at six sites during 1971–1973 were studied to determine the fraction of rainfall and snowmelt and the amounts of N, S, and P added by precipitation over Iowa The amount of NH4-N ha?1 added by precipitation annually at each site was about equal to that added as N03-N. The amounts of inorganic N ha?1 yr?1 added ranged from 10 kg in north-central to 14 kg in west-central Iowa, and the annual amounts of S04-S ha?1 added ranged from 13 kg in northeastern to 17 kg in north-central Iowa. It is estimated that, on average, precipitation adds about 0.6 kg of NH4-N, 0.6 kg of N03-N, and 1.5 kg of S04 -S ha?1 monthly in Iowa. However, the data indicated that, on an annual basis, the contribution of precipitation to P in soil is very small; at the most, about 0.1 kg of water-soluble P04-P ha?1 was added annually in Iowa. No N02-N could be detected in any of the precipitation samples analyzed. Average pH value of the rainfall and snowmelt samples collected at each site during each year was about 6, individual samples seldom reached as low as pH 4. The data indicate that the concentration of S04-S in precipitation in this region is seasonal, high during fall and winter and low during spring and summer.  相似文献   

7.
Over the years, a scarcity of information on nutrient gains or losses has led to overemphasis being placed on crop yields and economic income as the direct benefits from fertilizer micro-dosing technology. There is increasing concern about the sustainability of this technology in smallholder Sahelian cropping systems. This study was designed in the 2013 and 2014 cropping seasons to establish nutrient balances under fertilizer micro-dosing technology and their implications on soil nutrient stocks. Two fertilizer micro-dosing treatments [2 g hill?1 of diammonium phosphate (DAP) and 6 g hill?1 of compound fertilizer Nitrogen-Phosphorus-Potassium (NPK) (15-15-15)] and three rates of manure (100 g hill?1, 200 g hill?1 and 300 g hill?1) and the relevant control treatments were arranged in a factorial experiment organized in a randomized complete block design with three replications. On average, millet (Pennisetum glaucum (L.) R.Br.) grain yield increased by 39 and 72% for the plots that received the fertilizer micro-dosing of 6 g NPK hill?1 and 2 g DAP hill?1, respectively, in comparison with the unfertilized control plots. The average partial nutrients balances for the two cropping seasons were ?37 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?34 kg K ha?1yr?1 in plots that received the application of 2 g DAP hill?1, and ?31 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?27 kg K ha?1yr?1 for 6 g NPK hill?1. The transfer of straw yields accounted for 66% N, 55% P and 89% K for removal. The average full nutrient balances for the two cropping seasons in fertilizer micro-dosing treatments were ?47.8 kg N ha?1 yr?1, ?6.8 kg P ha?1 yr?1 and ?21.3 kg K ha?1 yr?1 which represent 7.8, 24.1 and 9.4% of N, P and K stocks, respectively. The nutrient stock to balance ratio (NSB) for N decreased from 13 to 11 and from 15 to 12 for the plots that received the application of 2 g DAP hill?1 and 6 g NPK hill?1, respectively. The average NSB for P did not exceed 5 for the same plots. It was concluded that fertilizer micro-dosing increases the risk of soil nutrient depletion in the Sahelian low-input cropping system. These results have important implications for developing an agro-ecological approach to addressing sustainable food production in the Sahelian smallholder cropping system.  相似文献   

8.
Abstract

Four rates of straw (0, 4, 8 and 12 t ha?1 yr?1) were incorporated in a field experiment with continuous spring barley. The experiment was conducted on a sandy soil (5.5% clay) and a sandy loam soil (11.2% clay). After eight years, the straw incorporation was combined with catch-crop growing with and without winter application of animal slurry and also spring fertilization with mineral fertilizer (0, 50, 100 or 125 kg N ha?1 yr?1). The combined experiment was conducted for three lyears on the sandy soil and for four years on the sandy loam soil. The effects on barley dry matter yield and N uptake are presented together with the long-term effects of the straw incorporations on crop growth and soil C and N. Grain yield on the sandy loam was unaffected by straw incorporation. On the sandy soil the highest straw application rates reduced grain yield in the unfertilized barley. When the barley received mineral fertilizer at recommended levels (100 kg N ha?1 yr?1), grain yield on this soil was also unaffected by the high straw rates. Including a catch crop had a positive effect on the grain yield of barley on both soils. The total N uptake in grain and straw generally increased with straw application up to 8 t ha?1 yr?1. With the highest straw application rate (12 t ha?1 yr?1), the total N uptake decreased but still exceeded N uptake in barley grown with straw removal. The barley accumulated higher amounts of N when a catch crop was included. The total N uptake in the barley was significantly higher after animal slurry application. The extra N uptake, however, was much lower than the amounts of N applied with the slurry. Incorporation of straw had only a small influence on N uptake after slurry application. The straw, therefore, was not able to store the applied N during winter. In the two four-year periods before the combined experiment, grain yield on the sandy loam was generally negatively affected by straw incorporations. In the second period, N uptake began to show a positive effect of the straw. On the sandy soil, grain yield and N uptake during the whole period were generally positively affected by the straw incorporations except for the highest straw rate (12 t ha?1 yr?1). The sandy loam soil showed higher increases in C and N content after the repeated straw incorporations and catch-crop growing than the sandy soil. When application of animal slurry was combined with the catch crop, no further increases in soil C and N were found relative to soil where a catch crop was grown without slurry application. Large amounts of the N applied with the slurry may therefore have been lost by denitrification or nitrate leaching.  相似文献   

9.
Abstract. The residual value of mineral N fertilizer applied in the spring was investigated in a field experiment where four cereals (winter wheat, winter barley, spring barley and spring oats) had been grown at reduced (0.7N), normal (1N) or high (1.3N) N fertilizer rates for 20 to 28 years. The effect of previous N fertilizer dressing was tested in two succeeding years by replacing the original N rate with five test N rates ranging from 0 to 240 kg N ha?1 for winter cereals and 0 to 200 kg N ha?1 for spring cereals. In the first test year, winter wheat grown on plots previously supplied with the high rate of mineral fertilizer (202 kg N ha?1 yr?1) yielded more grain and straw and had a higher total N uptake than wheat on plots previously supplied with the normal (174 kg N ha?1 yr?1) or reduced (124 kg N ha?1 yr?1) rate. The grain yield response and N uptake was not significantly affected by the N supply in the test year. The winter wheat grown in the second test year was unaffected by the previous N supply. Grain and straw yield response and total N uptake for spring barley, winter barley and oats, were almost identical irrespective of the previous N rate. After 20 to 28 years there were no significant differences in soil C and N (0 to 20 cm) between soil receiving three rates of N fertilizer. Soil from differently fertilized oat plots showed no significant differences in N mineralizing capacity. Nitrate leaching losses from the soils at the three N rates were estimated and the N balances for the 20 to 28 years experimental period calculated. The data indicated a reduction in overall loss of 189 to 466 kg N ha?1 at the normal and high N rates compared with the reduced N rate. We conclude that the N supplying capacity and soil organic matter content of this fertile sandy loam soil under continuous cereal cropping with straw removal was not significantly affected by differences in N fertilizer residues.  相似文献   

10.
Abstract

Pearl millet is a potential dryland crop for Nebraska. Experiments were conducted in eastern Nebraska in 2000, 2001, and 2002, and in western Nebraska in 2000 and 2001. The objectives were to determine optimum nitrogen (N) rate, N uptake, and N use efficiency (NUE) for pearl millet. The hybrids “68×086R” and “293A×086R” and N rates of 0, 45, 90, and 135 kg N ha?1 were used. Hybrids had similar yield, N uptake and NUE responses. In western Nebraska in 2000, pearl millet yield response to N rate was linear, but the yield increase was only 354 kg ha?1 to application of 135 kg N ha?1. In eastern Nebraska, pearl millet response to N rate was quadratic with maximum grain yields of 4040 in 2001 and 4890 kg ha?1 in 2002 attained with 90 kg N ha?1. The optimum N rate for pearl millet was 90 kg N ha?1 for eastern Nebraska. For western Nebraska, drought may often limit pearl millet's response to N fertilizer.  相似文献   

11.
Abstract

Factorial combinations of N, P and K fertilizer have been compared with the use of farmyard manure at M?ystad since 1922 in a seven-year crop rotation (3 ley, oat, potato, wheat, barley). Until 1982, low inputs of N fertilizer (22 kg ha?1) were used. In 1983, they were brought into line with current farming practice. This paper presents the results of three subsequent rotations. Yields without any fertilizer were on average 48% of those with 100 kg N ha?1 in compound fertilizer, whilst those with 20, 40 and 60 Mg ha?1 farmyard manure were 81, 87 and 90%, respectively. Yields with other combinations of N, P and K declined in the order NP, NK, N, PK and K. When NPK fertilizer was used, apparent recoveries of applied fertilizer were close to 50% for N and K, and around 40% for P. Much lower values were found for nutrients applied singly. Balance between N supply and removal was indicated at rates of about 60 kg N fertilizer ha?1 in potatoes, 75 kg ha?1 in cereals and 90 kg ha?1 in leys. A surplus of P was found in all crops at all N levels, and of K in cereals and potatoes. In leys, K balance was achieved with an N supply of 90 kg N ha?1. Nutrient balance was indicated at a little below 20 Mg ha?1 yr?1 farmyard manure. Larger manure applications gave large nutrient surpluses, particularly of N. Soil reaction remained close to neutral with the use of calcium nitrate and manure, but declined with the use of ammonium nitrate. Manure use gave the highest amounts of available P, K and Mg in soil. Similar increases in total inorganic P were found with manure use as with fertilizer use, but amounts of organic P and total K were little affected.  相似文献   

12.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

13.
Significance of microbial biomass and non-exchangeable ammonium with respect to the nitrogen transformations in loess soils of Niedersachsen during the growing season of winter wheat. I. Change of pool sizes Nitrogen transformations in loess soils have been examined by laboratory and field experiments. After straw application (· 8 t · ha?1), N in microbial biomass (Nmic) increased by about 20 mg · kg?1 soil (· 90 kg N · ha?1 · 30 cm?1) after 9 days of incubation (20 °C). Another laboratory experiment yielded an increase of about 400 mg of NH4+-N · kg?1 fixed by minerals within 1 h after addition of 1 M NH4+-acetate. Defixation of the recently fixed NH4+ after addition of 1 M KCl amounted to only 60 mg · kg?1 within 50 days. In a field experiment with winter wheat 1991, an increase in Nmic of about 80 kg N · ha?1 · 30 cm?1 was observed from March to June. After July, growth of the microbes was limited by decreased soluble carbon concentrations in the rhizosphere. Different levels of mineral N-fertilizer (0, 177 and 213 kg N · ha?1) did not affect significantly the microbial biomass. The same field experiment yielded a decrease of non-exchangeable ammonium on the “zero”-fertilized plot in spring by 200 kg N · ha?1 · 30 cm?1. The pool of fixed ammonium increased significantly after harvest. After conventional mineral N-fertilizer application (213 kg N · ha?1). NH4+-defixation was only about 120 kg N · ha?1 · 30 cm?1 until July.  相似文献   

14.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

15.
Ammonia emissions from senescing plants and during decomposition of crop residues NH3 emissions from plant stands, measured under simulated environmental conditions with the wind tunnel method, ranged between 0.8 and 1.4% of the N content of the shoot, equivalent to 1.1 to 2.9 kg NH3-N ha?1. The highest emissions were observed in faba beans whereas the emissions in winter wheat, spring rape and white mustard were lower. The total NH3 emissions were not affected by removing a part of the ears (sink reduction), but emissions occurred earlier, as did the plant senescence. This suggests that the NH3 emissions are closely related to senescence. NH3 emissions from decomposing crop residues ranged from 0.9 to 3.7% of the N content. The emissions from sugar beet leaves and potato shoots with high water content reached from 8.6 up to 12.6 kg N ha?1, whereas the emissions from field bean straw with high dry matter and N content were relatively low. (3.1 kg N ha?1, or 0.9% of the N content). The NH3 emissions from sugar beet leaves were reduced by 81% by ploughing and 63% by mulching.  相似文献   

16.
Based on experiments conducted during 1988–2009 on rainfed pearl millet/sorghum with 9 treatments in Vertisols, an efficient treatment for sustainable productivity is identified. Twenty kg of nitrogen (N) from farmyard manure (FYM) + 20 kg N (urea) + 10 kg phosphorus (P) ha?1 in pearl millet and 40 kg N (urea) + 20 kg P + 25 kg zinc sulfate (ZnSO4) ha?1 in sorghum gave maximum yield and rainwater-use efficiency, whereas 20 kg N (FYM) + 20 kg (urea) + 10 kg P ha?1 in pearl millet and 40 kg (urea) + 20 kg P ha?1 in sorghum and gave maximum soil N, P, and potassium (K) over years. The regression model of 20 kg N (crop residue) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 for predicting sorghum equivalent yield separately through precipitation and soil variables, whereas 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 under combined model of both variables. Treatment of 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 was superior for attaining maximum sorghum equivalent yield of 1062 kg ha?1, net returns of Rs. 4805 ha?1, benefit/cost (BC) ratio of 1.50, and 127 kg ha?1 of soil N, 10.3 kg ha?1 of soil P, and 386 kg ha?1 of soil K over years.  相似文献   

17.
Abstract

The aim of this study was to assess the mitigating effects of lime nitrogen (calcium cyanamide) and dicyandiamide (DCD) application on nitrous oxide (N2O) emissions from fields of green tea [Camellia sinensis (L.) Kuntze]. The study was conducted in experimental tea fields in which the fertilizer application rate was 544 kg nitrogen (N) ha?1 yr?1 for 2 years. The mean cumulative N2O flux from the soil between the canopies of tea plants for 2 years was 7.1 ± 0.9 kg N ha?1 yr?1 in control plots. The cumulative N2O flux in the plots supplemented with lime nitrogen was 3.5 ± 0.1 kgN ha?1, approximately 51% lower than that in control plots. This reduction was due to the inhibition of nitrification by DCD, which was produced from the lime nitrogen. In addition, the increase in soil pH by lime in the lime nitrogen may also be another reason for the decreased N2O emissions from soil in LN plots. Meanwhile, the cumulative N2O flux in DCD plots was not significantly different from that in control plots. The seasonal variability in N2O emissions in DCD plots differed from that in control plots and application of DCD sometimes increased N2O emissions from tea field soil. The nitrification inhibition effect of lime nitrogen and DCD helped to delay nitrification of ammonium-nitrogen (NH4+-N), leading to high NH4+-N concentrations and a high ratio of NH4+-N /nitrate-nitrogen (NO3-N) in the soil. The inhibitors delayed the formation of NO3-N in soil. N uptake by tea plants was almost the same among all three treatments.  相似文献   

18.
Subsoil acidity restricts root growth and reduces crop yields in many parts of the world. More than half of the fertilizer nitrogen(N) applied in crop production is currently lost to the environment. This study aimed to investigate the effect of gypsum application on the efficiency of N fertilizer in no-till corn(Zea mays L.) production in southern Brazil. A field experiment examined the effects of surface-applied gypsum(0, 5, 10, and 15 Mg ha~(-1)) and top-dressed ammonium nitrate(NH_4NO_3)(60, 120, and 180 kg N ha~(-1)) on corn root length, N uptake, and grain yield. A greenhouse experiment was conducted using undisturbed soil columns collected from the field experiment site to evaluate NO_3-N leaching, N uptake, and root length with surface-applied gypsum(0 and 10 Mg ha~(-1)) and top-dressed NH_4NO_3(0 and 180 kg N ha~(-1)). Amelioration of subsoil acidity due to gypsum application increased corn root growth,N uptake, grain yield, and N use efficiency. Applying gypsum to the soil surface increased corn grain yield by 19%–38% and partial factor productivity of N(PFPN) by 27%–38%, depending on the N application rate. Results of the undisturbed soil column greenhouse experiment showed that improvement of N use efficiency by gypsum application was due to the higher N uptake from NO_3-N in the subsoil as a result of increased corn root length. Our results suggest that ameliorating subsoil acidity with gypsum in a no-till corn system could increase N use efficiency, improve grain yield, and reduce environmental risks due to NO_3-N leaching.  相似文献   

19.
Water balance and leaching of plant nutrients, with special reference to N, were described for a 46-ha catchment consisting mainly of coniferous forest (one third of it clear-cut) during the period January 1982-August 1988. The atmospheric N load in this region is high compared with most other parts of Scandinavia. On average, annual N leaching amounted to 9.5 kg ha?1 in the form of NO3-N (83%), org-N (15%) and NH4-N (2%). The highest monthly rate of N transport observed was 3.9 kg ha?1. The NO3-N levels in groundwater in the 60-yr-old coniferous stand ranged from 0.5 to 3.1 mg L?1. The effect of clear-cutting on groundwater-NO3-N levels lasted 4 yr. The highest annual NO3-N transport from the clear-cut area observed was 18 kg ha?1. The groundwater in the spruce forest was very acidic (pH=4.3) in contrast to the stream water (pH=6.3). The relatively higher pH-value of the stream water was probably a result of chemical and biological processes occurring in the highly humified, periodically waterlogged peat soil (alder swamp) in the vicinity of the small stream.  相似文献   

20.
Nitrogen balances and total N and C accumulation in soil were studied in reseeded grazed grassland swards receiving different fertilizer N inputs (100–500 kg N ha?1 year?1) from March 1989 to February 1999, at an experimental site in Northern Ireland. Soil N and C accumulated linearly at rates of 102–152 kg N ha?1 year?1 and 1125–1454 kg C ha?1 year?1, respectively, in the top 15 cm soil during the 10 year period. Fertilizer N had a highly significant effect on the rate of N and C accumulation. In the sward receiving 500 kg fertilizer N ha?1 year?1 the input (wet deposition + fertilizer N applied) minus output (drainflow + animal product) averaged 417 kg N ha?1 year?1. Total N accumulation in the top 15 cm of soil was 152 kg N ha?1 year?1. The predicted range in NH3 emission from this sward was 36–95 kg N ha?1 year?1. Evidence suggested that the remaining large imbalance was either caused by denitrification and/or other unknown loss processes. In the sward receiving 100 kg fertilizer N ha?1 year?1, it was apparent that N accumulation in the top 15 cm soil was greater than the input minus output balance, even before allowing for gaseous emissions. This suggested that there was an additional input source, possibly resulting from a redistribution of N from lower down the soil profile. This is an important factor to take into account in constructing N balances, as not all the N accumulating in the top 15 cm soil may be directly caused by N input. N redistribution within the soil profile would exacerbate the N deficit in budget studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号