首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
【目的】探明山西省农牧交错带农牧生产系统的氮素流动特征及其环境效应,进一步为山西实施区域养分资源管理、加快农牧交错带产业结构调整提供科学依据。【方法】在整理统计资料、文献数据和实地调研的基础上,使用食物链养分流动模型(nutrient flows in food chains, environment and resources use,NUFER)和GIS,估算山西省农牧交错带(主要涉及大同、朔州、忻州、吕梁、临汾和太原等6个地市)42个县区农牧生产系统的氮素账户平衡、流动路径及损失途径。【结果】不同县区农田化学氮肥投入存在“两极分化”的现象,投入水平范围在6.7-253 kg·hm-2,极值间相差38倍;各县区农田氮素的投入结构也表现出较大差异,主要跟当地化学氮肥施用习惯及农业种植结构有很大的关系;单位农田面积农作物主产品的氮素携出量范围在19.11-96.75 kg·hm-2,空间上整体呈现南北高、中部低的变化趋势;不同县区农田氮素盈余量在-16-202 kg·hm-2,氮素亏缺与盈余情况并存;区内畜牧生产系统中外源饲料氮素投入差异较大,朔州市的山阴县外源饲料氮素投入高达0.94×104 t,而忻州的五寨、临汾的隰县、大宁和蒲县,则可以通过作物生产系统来满足畜牧生产系统的饲料需求,也充分反映了各县区畜牧业养殖规模和农牧产业结构存在较大差异;区内单位面积农田动物主产品氮素携出量范围在1.51-27.50 kg·hm-2,极差25.99 kg·hm-2,说明各县区畜牧生产系统的生产力水平差异较大,单位农田面积动物主产品的氮素携出量>13 kg·hm-2的分布在区域北部朔州市的山阴、怀仁、大同等县区,表明这些县区畜牧生产系统中的氮素利用率较高;单位耕地面积畜禽粪尿氮素负荷较高(>50 kg·hm-2)的县区主要分布在区域北部;农牧生产系统氮素损失的空间分布格局明显:一级区(>200 kg·hm-2)分布在区域北部,二级区(120-200 kg·hm-2)分布在区域南部和北部,三级区(<120 kg·hm-2)主要分布在区域中部,今后应重点关注区域北部农牧业生产过程中的氮素损失及环境问题。【结论】农业生产结构不合理、“农牧分离”是造成农牧生产系统氮素利用率低下的主要原因,今后农田养分资源综合管理要在空间上合理配置氮素资源,在养分投入上既要考虑化学氮肥和粪尿氮素的投入,还要兼顾来源于环境投入部分的氮素,更要注重和畜牧生产系统的耦合,以最小的环境代价生产更多的农牧产品。  相似文献   

2.
河南省小麦、玉米氮肥需求及节氮潜力   总被引:8,自引:0,他引:8  
【目的】估算河南省小麦、玉米氮肥需求量和节氮潜力,为河南省及黄淮海区域实现化肥零增长提供依据。【方法】通过统计数据分析河南省小麦、玉米生产和氮肥消费情况及趋势;基于测土配方施肥项目“3414”多年多点试验分析河南省小麦(n=748)和玉米(n=624)氮素累积量及生产单位籽粒的氮素需求;采用肥料效应计算最高产量施氮量和经济最佳施氮量,并在此基础上计算河南省小麦、玉米氮肥需求总量,估算河南省小麦、玉米节氮潜力。【结果】河南省小麦、玉米氮肥总消费量持续增加,单质氮肥消费量呈下降趋势,复混氮肥数量增加。2015年全省小麦、玉米氮肥消费量分别为133.0×104 t和60.9×104 t。河南省小麦、玉米地上部氮素累积量平均为209.4和183.7 kg·hm-2,每生产1 000 kg籽粒的氮素需求量平均为29.1和23.0 kg。肥料效应函数法计算的河南省小麦、玉米最高产量施氮量平均值分别为171.0 kg·hm-2和202.5 kg·hm-2;经济最佳施氮量平均分别为155.1和172.8 kg·hm-2。全省小麦氮肥需求总量折纯氮为57.8×104-67.7×104 t,节氮潜力为21.8×104-48.8×104 t,节氮16.4%-36.7%;全省玉米氮肥需求总量为42.7×104-67.7×104 t,节氮潜力最高为18.2×104 t,节氮30.0%。【结论】河南省小麦、玉米氮肥消费量与需求量持续增长,当前产量和管理水平下,实际消费量高于需求量;通过合理的氮肥管理,河南省小麦和玉米仍有很大的节氮潜力。  相似文献   

3.
【目的】探讨稻茬小麦高氮肥利用率条件下群体花后衰老特征。【方法】2010-2012年,在稻麦两熟制条件下,以扬麦20为材料,采用三因素裂区设计,以施氮量(纯N)为主区,设210.0 kg·hm-2、262.5 kg·hm-2两个水平;以施氮比例为副区,设基肥﹕壮蘖肥﹕拔节肥﹕穗肥分别为3﹕1﹕3﹕3、5﹕1﹕2﹕2两个水平;以穗肥追氮时期为裂区,设剑叶露尖、孕穗期、抽穗期和开花期四个水平。通过试验构建不同氮肥利用率(NUR)群体,研究其产量、物质生产、氮素吸收及花后剑叶衰老特性的变化特征。【结果】不同群体NUR变幅在31.18%-72.23%,NUR≥60%群体(氮高效群体)籽粒产量8 500 kg·hm-2以上,比NUR40%-60%群体(氮中效群体)和NUR≤40%群体(氮低效群体)籽粒产量分别高6.84%和21.36%,群体间差异均达显著水平。NUR与籽粒产量呈极显著线性正相关。不同群体间花前干物质积累量和氮素积累量差异未达显著水平。但随NUR增高,花后及总的干物质积累量、开花期植株氮素含量和成熟期群体氮素积累量增加,NUR≥60%群体花后和总的干物质积累量分别达6 000和17 500 kg·hm-2以上,开花期植株氮素含量和成熟期群体氮素积累量分别达1.50%和215 kg·hm-2以上。此外,随NUR的提高,花后群体光合面积衰减逐渐减缓,净同化率逐渐增加;植株花后剑叶光合能力和抗衰老能力逐步增强,在籽粒灌浆后期表现更为明显,促进了花后光合物质生产。NUR≥60%群体花后叶面积衰减率、光合势和净同化率分别在0.14 LAI·d-1、105×104 m2·d·hm-2和9.50 g·m-2·d-1左右。综合两年结果,在氮肥适当后移(3﹕1﹕3﹕3)条件下,穗肥适当早施(剑叶露尖、孕穗期),产量及氮肥利用率较高;高施氮量(262.5 kg·hm-2)的增产效果不明显,且氮肥利用效率较低。在施氮量210.0 kg·hm-2、氮肥运筹3﹕1﹕3﹕3、剑叶露尖追氮处理下两年产量均高于9 000 kg·hm-2,氮肥利用率为各处理最高。【结论】稻茬小麦高氮肥利用率条件下群体在生育中后期具有较高植株氮素营养水平,氮素吸收与积累增加,有利于促进氮素向籽粒的运转;有利于延缓花后光合面积衰减及叶片衰老、增强光合物质生产能力,实现氮肥利用率与籽粒产量的同步提升。  相似文献   

4.
栾城城郊型农牧系统养分流动与环境排放时空特征   总被引:7,自引:1,他引:6  
【目的】改革开放以来中国种植业和畜牧业生产模式及农牧系统结合程度都发生了很大改变,这种改变对农牧体系养分流动以及环境排放都产生了较大影响。论文以河北省石家庄市栾城区为例,分析其1985-2014年农牧系统生产结构、养分流动和损失时空变化特征,确定农牧系统养分损失的关键节点和影响因素,为栾城区以及其他县级行政区的农业可持续发展提供理论依据。【方法】采用食物链养分流动模型(NUFER模型:nutrient flow in food chain, environment and resources use)并结合实地调研,定量栾城区氮磷养分流动特征和影响因素。NUFER模型综合考虑了作物生产系统、畜禽生产系统、食品加工系统和家庭消费系统的氮磷养分流动、利用率和环境损失。实地调研采用面对面的问卷调研方式收集信息,调研内容包括农田养分输入输出、生产管理和养殖户农场养分输入输出、生产管理及粪尿管理等。【结果】2014年种植业蔬菜水果播种面积占总播种面积的比例达到25%,每公顷耕地氮和磷(折纯,下同)投入量分别为763和335 kg,单位面积氮和磷盈余量分别为132和237 kg·hm-2;畜牧业养殖密度达到18 LU/hm2,饲料进口率达到75%,畜牧业源外源氮磷投入分别占农牧体系外源氮磷投入量的57%和39%,畜牧业源氮磷主产品输出占农牧体系氮磷主产品输出的60%和33%,是典型的高环境负荷的城郊型农牧生产体系。1985-2014年,畜牧业畜禽粪尿氮素还田率由59%降至35%。种植业氮利用率从45%降至43%,磷利用率从32%降至23%;畜牧业氮利用率从14%增至30%,磷利用率从4.4%增至10%;农牧系统氮利用率从41%降至36%,磷利用率从27%降至16%。2014年生产1 kg作物产品氮的平均氮损失为0.66 kg,生产1 kg作物产品磷的平均磷损失为0.11 kg;生产1 kg畜禽产品氮的平均氮损失为1.4 kg,生产1 kg畜禽产品磷的平均磷损失为1.8 kg;生产1 kg农牧系统产品氮的平均氮损失为1.5 kg·kg-1,磷损失为0.75 kg·kg-1磷产品。农牧体系氮损失的主要途径是氨挥发,农牧体系磷损失的主要途径是粪尿直接水体排放。【结论】受城镇化驱动和农牧系统生产结构改变的影响,经过近30年发展,栾城区成为高投入、高产出、低氮磷利用率、畜牧业占主导地位的高环境负荷的城郊型农牧生产体系。当前农牧系统养分利用率偏低、损失偏高主要源自过高的畜禽养殖密度、农牧分离以及农牧体系养分管理措施的不合理。因此,确定栾城区合理的畜禽养殖承载量,加强饲养管理,实行粪尿全链条管理等农牧结合措施将对农牧系统可持续发展具有重要意义。  相似文献   

5.
中国天然草地氮磷流动空间特征   总被引:5,自引:2,他引:3  
【目的】定量研究天然草地的氮磷流动空间特征,为优化牧草施肥和提高牧草产量提供科学依据。【方法】建立中国天然草地氮磷养分输入(输出)数据库,利用NUFER模型定量中国天然草地氮磷平衡账户、利用率和环境排放特征。【结果】(1)2013年,全国天然草地氮和磷的输入(输出)总量分别为5 034 Gg N和318 Gg P,单位面积的输入(输出)量分别为19 kg N·hm-2和1.2 kg P·hm-2。氮沉降和畜禽粪尿磷分别占氮和磷输入总量的49%和89%。各区域天然草地氮和磷输入(输出)量变化范围分别为7.0-70 kg N·hm-2和0.12-8.0 kg P·hm-2;(2)2013年,天然草地氮和磷养分利用率分别为105%和191%,各区域间差异很大。中国各地区天然草地的氮利用率变化范围为67%-141%,磷利用率的变化范围为75%-538%;(3)2013年,天然草地氮和磷的环境损失量分别为1.7 kg N·hm-2和0.059 kg P·hm-2,氨挥发和侵蚀分别是氮和磷的主要损失途径。西南和东北地区天然草地氮损失量较多,部分区域的损失量超过8.0 kg N·hm-2;西北地区氮损失量较少,平均不足3.0 kg N·hm-2;青藏高原区氮损失量最少,不足1.0 kg N·hm-2。磷的环境排放空间规律与氮排放相似;(4)2013年,全国天然草地土壤氮和磷的亏缺总量分别为706 Gg N和315 Gg P,单位面积亏缺量分别为2.7 kg N·hm-2和1.2 kg P·hm-2。北方和西南部分地区天然草地的氮土壤累积量为负值,重庆、吉林和辽宁的土壤氮亏损量超过20 kg N·hm-2;西部和西南部分省份天然草地的氮土壤累积量为正值,其中广西和云南的土壤氮累积量超过5.0 kg N·hm-2。除广西和贵州外,其他区域天然草地磷养分均有不同程度的亏缺,重庆天然草地磷的亏缺量最大,为3.7 kg P·hm-2。【结论】2013年,全国天然草地的氮和磷输入量较小,约50%的氮素通过氮沉降输入系统,约90%的磷素通过畜禽粪尿磷输入系统;全国天然草地土壤的氮和磷呈亏缺状态,养分利用率高于100%,当前草地系统不可持续,应注意补施氮磷养分;全国天然草地单位面积氮和磷的环境损失量较小,西南地区天然草地的氮和磷环境损失量大于其他区域。各区域天然草地氮磷流动空间特征差异较大。  相似文献   

6.
【目的】在陕西关中冬小麦-夏玉米轮作区,研究还田玉米秸秆的氮释放对土壤供氮和冬小麦氮吸收的影响,为优化区域秸秆还田的小麦氮素管理提供理论依据。【方法】田间试验于2012年10月至2013年5月在陕西省周至县终南镇进行,冬小麦播种后,在小麦行间填埋装有风干玉米秸秆的尼龙网袋,采用网袋法与15N同位素交叉标记还田玉米秸秆和氮肥,在秸秆还田条件下,设置不施氮和施氮200 kg N·hm-2两个处理,重复4次,定期取样测定网袋中剩余秸秆的氮素变化和收获期小麦不同器官的氮含量,研究小麦生长季还田玉米秸秆的氮素释放,秸秆氮和肥料氮的去向,及不同来源的氮素对小麦地上部氮吸收的贡献。【结果】残留在玉米秸秆中的总氮量从小麦播种到越冬前降低,此后到返青期上升,返青期后又逐渐下降。从播种至收获,不施氮和施氮量200 kg N·hm-2时,秸秆自身氮素的释放量分别为19.7和18.3 kg·hm-2,吸持的土壤氮为10.4和7.5 kg·hm-2;吸持肥料氮(施氮时)为3.6 kg·hm-2,因此秸秆向土壤净释放的氮素分别为9.4和7.2 kg·hm-2。小麦收获期,不施氮和施氮200 kg N·hm-2时分别有65.1%和67.7%的秸秆氮残留在未腐解的秸秆中,31.5%和30.4%随着秸秆腐解释放进入土壤或损失,小麦当季吸收利用的秸秆氮很少,分别为3.4%和1.9%。秸秆还田条件下,施氮量为200 kg N·hm-2时,经吸收进入小麦地上部、残留于土壤及损失、被玉米秸秆吸持的肥料氮分别占施入土壤肥料氮总量的25.0%、73.2%和1.8%。土壤氮对小麦当季氮吸收的贡献最大,肥料氮次之,秸秆氮的贡献最小,不施氮与施氮时,分别为98.3%和69.2%、0和30.1%,1.7%和0.6%。小麦吸收的土壤、肥料和秸秆氮素主要分配在小麦籽粒中,不施氮与施氮时分别为98.1%和68.8%、0和30.5%、1.9%和0.7%。【结论】在陕西关中冬小麦-夏玉米轮作区,种植一季小麦后,还田秸秆氮主要残留在田间未腐解的秸秆中,占65%以上;肥料氮以残留于土壤或损失为主,高于70%;土壤氮对小麦氮吸收的贡献最大,约为70%。  相似文献   

7.
黄土高原旱地小麦覆膜增产与氮肥增效分析   总被引:8,自引:3,他引:5  
【目的】研究覆膜栽培条件下黄土高原旱地冬小麦产量形成规律和氮肥吸收运移特征,为旱地小麦高产高效生产提供理论依据。【方法】于2012-2016年在晋南黄土旱塬冬小麦种植区,通过农户模式(FP)、农户施肥+垄膜沟播模式(RFSF1)、监控施肥+垄膜沟播处理(RFSF2)和监控施肥+全膜覆土穴播处理(WFFHS)4种不同栽培模式,具体分析不同施肥和覆膜措施互作对黄土旱塬冬小麦产量形成、地上部氮素积累转移、土壤硝态氮残留以及土壤氮素平衡的影响。【结果】试验期间,农户模式冬小麦平均产量为3 367 kg·hm-2,通过监控施肥覆膜种植,平均产量可提升至4 491 kg·hm-2,监控施肥对籽粒产量形成的贡献率为14.8%,监控施肥和覆膜协同贡献率达24.7%-42.1%。黄土旱塬冬小麦产量形成主要取决于公顷穗数,其次是千粒重。WFFHS处理因其合理的群体构建和良好水肥条件具有最高公顷穗数、千粒重和籽粒产量,平均分别为581×104穗/hm2、44.3 g和4 785 kg·hm-2。从地上部氮素转运看,冬小麦地上部吸收氮素的花后转运量与生物产量和经济产量呈极显著正相关,相关系数分别为0.959**和0.960**。农户模式小麦籽粒中3/4氮素来源于花前营养器官的转移,1/4氮素来源于花后根系土壤吸收。通过监控施肥覆膜种植可显著提高花前营养器官氮素向籽粒的转移量,其转运贡献率在81.4%-88.8%。从土壤氮素残留看,长期过量施氮已导致黄土旱塬麦田土壤硝态氮在1 m 土层的累积,累积量在100 kg·hm-2 以上,20-60 cm土层为累积峰值。经过连续4年种植,农户模式2 m土壤硝态氮累积量达277 kg·hm-2,较2012年播前增加了87.7%,其中75%的硝态氮集中在0-120 cm 土层,监控施肥覆膜种植处理2 m土壤硝态氮累积量较2012年播前仅增加15.7%-24.2%。试验期间土壤残留硝态氮有随降水向下淋移的趋势,表现为2016年收获期各处理在120-200 cm土层较2012年播前有10.2%-133.7%的增幅。从4年土壤氮平衡角度总体评价,土壤残留氮素具有一定后效作用,各处理氮肥表观利用率在28.8%-56.7%,氮肥表观残留率在12.1%-28.9%,氮肥表观损失率在31.2%-49.6%。监控施肥覆膜种植可减少土壤氮表观损失量和土壤残留量,增加氮表观矿化量。其中WFFHS处理更大程度上利用了历年土壤残留硝态氮和有机质的矿化氮,具有相对低的氮素表观残留率(12.1%)和氮素表观损失率(31.2%)以及相对高的氮素表观利用率(56.7%)。【结论】全膜覆土穴播监控施肥种植可更好地改善土壤水肥供应条件,更大程度利用历年土壤残留硝态氮,增加地上部氮素积累量、积累氮素向籽粒的转移贡献率,构建合理群体,最终获得显著的增产效应和较高的氮素利用效率,是黄土高原冬小麦区有效的栽培措施。  相似文献   

8.
【目的】测墒补灌是近年来研究的一种小麦节水灌溉新技术。论文旨在探索测墒补灌与施氮对冬小麦生长的影响,为该区节水、节氮提供依据。【方法】采用漫灌的方式设置测墒补灌和施氮两因素田间试验,补灌设置4个处理,于冬小麦拔节期、开花期依据0-40 cm土层土壤质量含水量进行测墒补灌,补灌至土壤田间持水量的50%(W1)、60%(W2)、70%(W3)、80%(W4)。施氮设置4个处理,不施氮(N0)、施纯氮180 kg·hm-2(N180)、240 kg·hm-2(N240)和300 kg·hm-2(N300)。在此处理下研究了测墒补灌和施氮对冬小麦产量及水分、氮素利用效率的影响。【结果】(1)各施氮处理下,补灌量的增加可增加冬小麦籽粒产量,当补灌量至土壤田间持水量的60%-80%范围内时,冬小麦籽粒的增产效应差异不显著。各补灌处理下,当施氮量超过240 kg·hm-2时籽粒产量无显著性变化。本试验条件下当补灌至土壤田间持水量的60%,施氮量为240 kg·hm-2时冬小麦籽粒产量达到最高,为8 104.6 kg·hm-2。(2)增加施氮量和补灌量均可显著增加麦田总耗水量,但当施氮量超过240 kg·hm-2时,施氮的提高效果不显著。补灌量的增加会显著增加麦田总耗水量,但当补灌至土壤田间持水量60%(W2)、70%(W3)时较补灌至80%(W4)处理显著降低耗水量,说明有利于节约灌水而获得较高产量。(3)相同施氮处理下,补灌量的增加可显著提高冬小麦水分利用效率,当补灌量增至土壤田间持水量的60%时,冬小麦水分利用效率达到最大值,为14.7 kg·hm-2·mm-1。相同补灌处理下,增施氮肥可显著提高冬小麦水分利用效率,但施氮量不宜超过240 kg·hm-2,否则将导致水分利用效率降低。(4)相同施氮处理下,应控制补灌量至土壤田间持水量的60%时冬小麦氮素干物质生产效率及氮素利用效率最高,为60.1 kg·kg-1、22.4 kg·kg-1。相同补灌处理下,施氮量应控制在240 kg·hm-2时可获得较高的氮素干物质利用效率及冬小麦氮素利用效率最高,为63.9 kg·kg-1、23.5 kg·kg-1。【结论】本试验条件下当施氮量为240 kg·hm-2、冬小麦拔节期、开花期补灌至土壤田间持水量的60%时冬小麦籽粒产量、水分利用效率、氮素干物质利用效率、氮素利用效率均最高,为最优的节水、节氮、高产组合,推荐其作为该区域适宜水、氮用量。  相似文献   

9.
云南省农牧生产系统氮素流动时空变化特征与环境效应   总被引:3,自引:1,他引:2  
【目的】研究云南省农牧生产系统的氮素流动途径并评价其环境效应,提高农牧业氮素利用率,改善农业生态环境,为制定符合云南省农业发展规律的政策提供科学依据,实现社会经济生态的可持续发展。【方法】通过运用食物链养分流动模型(nutrient flows in food chains, environment and resources use,NUFER),从时间序列的角度分析1995-2014年云南省农牧业氮素养分流动时间分异特征,结合GIS,从空间格局角度分析2014年云南省16个地州农牧业氮素养分流动空间分布特征。【结果】1995-2014年云南省农牧系统氮素投入量逐年递增,从1995年的2.1×106 t增至2014年的3.5×106 t。氮肥的施用和饲料进口是造成农牧系统氮素投入量增加的主要原因。农田主产品吸氮量与动物生产系统主产品吸氮量在时间上呈现同向增长的关系,农产品吸氮量1995-2014年间上涨2.1倍,动物生产系统主产品吸氮量上涨8.5倍,其中2000年、2006年变化最为剧烈。云南农牧业快速发展的过程中,由于作物播种面积扩大、栽植技术提高,畜牧业养殖规模扩大,模式改良所引起的氮素吸收效率提高。云南省农牧生产系统氮素流动表现出极大的不平衡性;氮素投入呈现放射式分布特征,中心投入量高,四周投入量逐渐递减。吸氮量则表现出与区域社会经济发展状况相协同的特点,经济发达地区吸氮量较高,经济发展滞后的区域,吸氮量较低。由于地形条件引起的径流、侵蚀、淋洗,以及由于施肥方式不合理所引起的氨挥发是导致农牧生产系统中氮素损失的重要原因。根据云南省氮素投入、吸收和损失规律,可将各地州划分为高投入高排放(大理、昆明、红河)、高投入低排放(曲靖、丽江、楚雄等)、低投入高排放(迪庆、昭通等)和低投入低排放(怒江、普洱)4大类型。【结论】云南省传统施肥方式导致施肥过量,大量肥料通过氨挥发的方式排入大气中,动物养殖过程中产生的粪尿中氮素通过径流、淋溶进入水体,造成农业生产过程中经济效益的降低、环境污染。从空间格局上看,大理、昆明、红河的氮素损失较高。今后亟需改进化肥施用方式,提高化肥利用率,改进畜牧业养殖模式,提高粪尿有机还田的数量。针对主要区域重点治理,采用因地制宜的农牧体系氮素优化管理技术、增加粪尿养分循环和提高氮养分效率,减少氮素向大气和水体中的排放数量,从而实现农牧体系氮素的合理循环。  相似文献   

10.
尿素硝铵溶液对黑土区春玉米产量和氮素吸收利用的影响   总被引:6,自引:0,他引:6  
【目的】尿素硝铵溶液(urea ammonium nitrate solution,UAN)是集硝态氮、铵态氮和酰胺态氮于一身的液体氮肥品种,兼有3种氮源优势。本研究目的在于明确黑土区春玉米施用UAN的肥效和氮素利用效率,为进一步科学应用及推广提供依据。【方法】2015和2016年在吉林省黑土区设置大田试验,施肥处理包括:不施氮(N0)、尿素一次性基施200 kg N·hm-2(U200)、UAN一次性基施200 kg N·hm-2(UAN200)、尿素基施80 kg N·hm-2+追施120 kg N·hm-2(U80-120)、UAN基施80 kg N·hm-2+追施120 kg N·hm-2(UAN80-120)、尿素基施64 kg N·hm-2+追施96 kg N·hm-2(U64-96)、UAN基施64 kg N·hm-2+追施96 kg N·hm-2(UAN64-96),追肥时期为拔节-大喇叭口期,施肥深度均为12 cm。测定指标包括籽粒产量、产量性状、植株吸氮量、土壤无机氮含量,并计算土壤-作物系统的氮素平衡、氮素的表观利用、残留和损失状况。【结果】2015和2016年施氮处理的玉米产量、植株吸氮量相比不施氮处理显著提高,均以UAN200处理最高(10.3、11.9 t·hm-2和187.4、288.2 kg·hm-2),而U64-96处理最低(9.14、10.2 t·hm-2和159.1、243.8 kg·hm-2)。相同施氮量、施用方式条件下,UAN处理的玉米产量均等于或高于尿素处理。2015年UAN在200 kg N·hm-2一次性、分次施用和160 kg N·hm-2分次施用条件下相比尿素分别增加6.1%、2.0%和5.3%,2016年分别增加0.1%、7.8%和7.4%,其中UAN80-120处理显著增产。UAN增产的主要原因是减少果穗秃尖长度而增加单穗粒数。UAN处理的植株氮素吸收量在相同施氮量、施用方式条件下均高于尿素处理,而收获后土壤无机氮残留量和氮素表观盈余量相对较低,因而获得较高的氮素利用率。与UAN200处理相比,UAN64-96处理在减氮40 kg N·hm-2条件下两年玉米产量分别达到9.6和11.0 t·hm-2,其中2015年干旱条件下与UAN200处理无显著差异。而且,UAN64-96处理的土壤氮素表观残留率最低,2015和2016年分别为2.4%和4.4%,而氮素表观利用率最高,分别达到42.6%和52.0%。【结论】相同用量和施用方式下,黑土区玉米施用UAN可获得与尿素相同甚至更高的产量和氮素吸收量,同时土壤氮素残留和盈余较少,氮素利用率明显较高,环境效应较好。从施氮量、产量和氮素利用及损失等方面综合考虑,黑土区春玉米推荐施用160 kg N·hm-2的UAN,以基肥40%和拔节-大喇叭口期追肥60%分次施用。  相似文献   

11.
【目的】随着中国城市化进程的加快和经济的快速发展,人们对食品的需求和饮食结构发生了明显变化。城郊农牧生产的集约化发展在满足人们日益增长的对动物性产品和高品质植物性产品需求的同时,也带来了严重的资源浪费和环境污染问题。论文通过分析都市圈"土壤-饲料-动物"体系养分流动和环境排放特征,为养分资源综合管理、促进农牧结合和保护生态环境等提供科学建议。【方法】通过对北京市生猪(92个)、奶牛(28个)、肉牛(11个)、蛋鸡(27个)、肉鸡(26个)和肉鸭(16)共计200个农场的生产管理、饲料来源和投入、粪尿管理、还田利用的调研,总结出北京市农牧生产不同规模体系的特征参数,结合食物链养分流动模型(nutrient flows in food chains,environment and resources,NUFER)、北京市历史统计数据和文献参数数据对北京市都市圈农牧系统的氮磷流动、养分利用率和环境损失进行综合评价。对1980年与2013年农牧生产体系养分流动特征、利用率和环境排放特征的时空变化进行比较分析。【结果】从"土壤-饲料-动物"体系氮磷流动特征分析结果可以看出,体系中氮磷的投入和输出结构发生了较大变化。2013年,"土壤-饲料-动物"体系中进口主产物饲料氮磷投入是主要的养分来源,而1980年进口副产品饲料是主要的氮磷投入源。2013年氮磷损失为主要的输出项,而1980年氮磷还田为主要的输出项。这就说明随着城市化的发展和农牧系统的规模化,越来越多的外来养分在都市农牧系统中集中,从而带来了更大比例的环境损失输出。2013年,农牧生产体系氮素利用率NUEC+A为29.0%,与1980年相似。其中2013年农牧生产体系中的作物生产体系氮素养分利用率NUEC为33.0%,低于1980年的39.5%,而2013年动物生产体系NUEA为20.6%,高于1980年的17.8%。环境损失特征分析结果显示,单位面积氮磷损失和损失途径均发生了较大变化。2013年,每公顷耕地面积氮素和磷素总损失分别为436.5和37.5 kg·hm~(-2),而1980年的氮素和磷素损失分别为77.5和3.2 kg·hm~(-2),2013年单位耕地面积的氮素和磷素损失量较1980年分别增加了4.6倍和10.7倍。2013年氮素气体损失占氮素总损失的比例最大,为61.1%,其次为直接排放,为31.3%,淋溶径流损失比例最小,为7.6%。与1980年相比,气体损失比例明显降低,而无序排放比例明显增加,超过淋溶径流成为第二大损失途径。2013年磷素直接排放损失比例超过淋溶径流成为最主要的排放途径。同时,北京市"土壤-饲料-动物"体系环境氮磷损失在城郊区域迅速增加,而在城市中心区域迅速减少。【结论】1980—2013年间,北京市"土壤-饲料-动物"系统氮磷流动特征和环境排放时空分布发生了很大变化。这些变化与种养结构的变化、养殖规模和方式以及环保政策密切相关。  相似文献   

12.
夏玉米施用不同缓释化处理氮肥的效果及氮肥去向   总被引:6,自引:3,他引:3  
【目的】研究不同缓释化处理氮肥对夏玉米的产量、氮肥去向及氮素平衡的影响,为提高夏玉米一次性施肥的氮肥利用率并降低氮肥的环境影响提供理论依据。【方法】试验于2014-2015年以郑单958为供试品种,在华北地区中低产田连续两年进行大田试验,共设置6个处理,分别为:不施氮(CK)、尿素(CU)、树脂包膜尿素(CRF)、控失尿素(LCU)、凝胶尿素(CLP)和脲甲醛(UF)。在玉米成熟期采集植物和土壤样品,用于测定植物含氮量和土壤无机氮含量,并计算作物吸氮量、氮肥利用率、土壤无机氮积累量、氮肥损失量等。【结果】(1)氮肥缓释化处理能够明显提高夏玉米的产量,促进氮素吸收。与尿素相比,脲甲醛、凝胶尿素、树脂包膜尿素和控失尿素可分别提高夏玉米产量18.9%、16.8%、13.7%和13.6%,同时氮肥农学利用效率分别提高6.5、4.8、4.0和3.7 kg·kg-1。(2)不同氮肥处理的作物吸收肥料氮以及肥料氮在0-100 cm土层残留量之间存在显著性差异。脲甲醛、凝胶尿素、树脂包膜尿素、控失尿素和尿素的氮肥表观回收率分别为54.9%、42.4%、38.3%、38.3%和22.0%,肥料氮在0-100 cm土层残留量分别占施氮量的28.3%、43.8%、39.2%、46.2%和46.6%。此外,与尿素相比,氮肥缓释化处理能够显著降低肥料氮的损失,凝胶尿素、控失尿素、脲甲醛和树脂包膜尿素分别降低了47.6%、43.1%、40.8%和26.7%。(3)综合分析不同氮肥处理的农田氮素平衡,脲甲醛处理的夏玉米吸氮量最高,为245.0 kg·hm-2,其次是凝胶尿素,为222.5 kg·hm-2。脲甲醛的0-100 cm土层残留量在缓释化氮肥中最低,为153.4 kg·hm-2,树脂包膜尿素、凝胶尿素和控失尿素分别为173.1、181.5和185.7 kg·hm-2。凝胶尿素处理的氮表观损失量最低,为35.6 kg·hm-2,控失尿素、脲甲醛和树脂包膜尿素的氮表观损失量分别为38.8、41.2和51.3 kg·hm-2。【结论】在华北地区中低产田土壤上,氮肥缓释化处理能够显著促进夏玉米对氮素的吸收、减少氮素损失。脲甲醛和凝胶尿素的效果相对较好。  相似文献   

13.
东北玉米化肥减施增效技术途径探讨   总被引:22,自引:1,他引:21  
减肥增效是提高我国玉米竞争力、保护生态环境的重大需求。论文重点以东北玉米为研究对象,从玉米养分需求规律、养分高效品种的节肥潜力、化肥高效施用的4R技术、化肥的有机替代技术等方面论述减肥增效的技术途径。研究表明,东北地区每生产100 kg玉米籽粒产量的平均N、P_2O_5、K_2O的需求量范围分别为1.56—1.89、0.60—0.88和1.27—2.30 kg;吐丝后对氮磷的需求量分别占全生育期需求量的20%—30%和20%—40%,对籽粒氮磷的贡献率分别为20%—30%和30%—38%。在目前东北土壤生产力状况下,实现玉米12 000 kg·hm~(-2)的产量水平平均氮肥投入量约为180 kg·hm~(~(-2))。应用不同类型新型肥料的节约氮肥潜力为9—25 kg·hm~(-2),应用磷酸二铵和硫酸铵+过磷酸钙做启动肥可以促进苗期生长。应用高地隙追肥机可以有效延长追肥的适宜期,有利于使"养分供应匹配养分需求"。滴灌施肥技术适宜在风砂质地土壤及干旱频繁发生地区推广,实现增产19%—128%,产量可达12 000—13 000 kg·hm~(-2)。地下滴灌施肥技术增产效果相同,应该大力推广。利用主动冠层传感器Greenseeker,可以在春玉米V5-V8期很好地估测叶面积指数、地上部生物量以及植株吸氮量,并应用于变量、精准的氮肥推荐。因地制宜地应用秸秆还田技术,可以节省肥料投入,提升土壤质量。其中秸秆覆盖条耕技术(Strip-till)可以协调传统耕作与免耕的优点,有很好的应用前景。未来应该从农民实际应用的角度出发,将技术研究与技术推广相结合,针对不同的栽培耕作技术模式,建立农民可应用、或在不久的将来可应用的技术规程,实现大面积应用,达到区域性减肥增效的目标。  相似文献   

14.
【目的】通过研究不同水旱轮作方式下秸秆还田与氮肥运筹对作物产量、氮素吸收及氮肥偏生产力的影响,以期为秸秆还田条件下氮肥的合理施用提供理论依据。【方法】2013-2014年在湖北省孝南、松滋、应城等14个县(市、区)开展水稻-油菜和水稻-小麦2种轮作条件下秸秆还田与氮肥运筹田间试验。试验共设置5个处理,分别为氮肥习惯3次施用、氮肥习惯3次施用配合秸秆还田、高量氮肥3次施用配合秸秆还田、氮肥2次施用(后肥前移)、氮肥2次施用(后肥前移)配合秸秆还田。分析秸秆还田条件下不同氮肥运筹对水稻、油菜及小麦产量、生物量、氮素吸收量及氮肥偏生产力的影响。【结果】对比秸秆还田下的2种轮作模式,增施氮肥对稻油轮作系统作物产量、地上部生物量及氮素吸收量无显著影响,而其对稻麦轮作系统的各指标均有显著提高的作用。稻麦轮作下,高量氮肥3次施用配合秸秆还田相比较氮肥习惯3次施用水稻和小麦平均增产量为0.632和0.564 t·hm-2,增产率分别达6.85%和10.67%;地上部生物量分别增加1.50和1.07 t·hm-2,增幅分别达8.11%和9.06%。地上部氮素吸收量分别增加11.54和23.57 kg·hm-2,增幅分别达7.88%和21.28%,稻麦周年氮素吸收总量增加35.11 kg·hm-2,增幅达13.65%。氮肥2次施用配合秸秆还田处理产量和氮素吸收量可以达到或优于氮肥习惯3次施用处理的水平,且以稻麦轮作下效果更为明显,其中水稻和小麦季平均增产量分别为0.439和0.385 t·hm-2,增产率分别达5.12%和7.63%;地上部氮素吸收量分别增加11.09和21.06 kg·hm-2,增幅分别达8.26%和20.82%,稻麦周年氮素吸收总量平均增加32.14 kg·hm-2,增幅达13.66%。就氮肥利用率而言均表现出氮肥的常量投入即可获得较高的氮肥偏生产力(水稻季均值范围52.03-59.29 kg·kg-1,油菜季10.62-11.12 kg·kg-1,小麦季33.63-36.20 kg·kg-1),等氮量投入下秸秆还田效果要明显优于秸秆不还田,且秸秆还田条件下氮肥后肥前移可以提高氮肥利用率。稻油轮作下氮肥习惯3次施用配合秸秆还田相比较氮肥习惯3次施用、氮肥2次施用配合秸秆还田相比较氮肥2次施用水稻季氮肥偏生产力分别增加2.45和4.07 kg·kg-1,增幅分别达4.36%和7.37%,油菜季分别增加0.36和0.49 kg·kg-1,增幅分别达3.38%和4.62%;稻麦轮作下水稻季分别增加3.88和1.64 kg·kg-1,增幅分别达7.46%和3.10%,小麦季分别增加1.60和1.93 kg·kg-1,增幅分别达4.75%和5.65%。与氮肥习惯3次施用处理相比,氮肥2次施用配合秸秆还田处理在稻油轮作下水稻和油菜氮肥偏生产力平均分别增加5.68%和4.00%;在稻麦轮作下水稻和小麦氮肥偏生产力平均分别增加5.12%和7.63%。【结论】综合氮素利用效率来看,在秸秆还田条件下2种水旱轮作模式均可以通过调整氮肥的后肥前移以保证作物达到高产或稳产的目的,同时提高氮肥利用率。  相似文献   

15.
【目的】合理施肥是保证和维持油菜产量的关键。面对目前集约化的种植管理模式,肥料的粗放管理和施用势必造成养分效率的下降,从而影响油菜产量。本研究通过比较长江流域冬油菜种植区域农民习惯施肥与推荐施肥的产量和养分利用效率差异,为冬油菜肥料合理施用、提高肥料利用效率提供策略。【方法】选取2005—2016年长江流域(包括四川、贵州、湖北、湖南、安徽、江苏和浙江7个省份)的535个油菜田间试验,分析不施肥(CK)、农民习惯施肥(FP)和推荐施肥(RF)处理间以及长江流域各区域间的油菜产量和产量分布特征,比较不同施肥处理的增产效果,以及氮、磷、钾肥料用量和偏生产力的差异,计算RF处理与FP处理间施肥量的差值,评估长江流域氮、磷、钾肥的减施潜力。【结果】长江流域CK处理冬油菜产量主要分布在500—1 500 kg·hm~(-2),FP处理主要分布在1 500—3 000 kg·hm~(-2),RF处理最高,集中在2 000—3 000 kg·hm~(-2),土壤基础地力对RF处理油菜产量的贡献率为45.1%—49.7%;3个不同处理在区域间油菜的平均产量均表现为长江下游中游上游。长江上、中、下游FP处理油菜产量均值分别为2 033、2 182和2 542 kg·hm~(-2),RF处理油菜产量较FP分别增产16.7%、16.5%和13.9%,增产点比例达77.5%—94.9%。随着地力水平的提升,各个处理油菜增产率均表现出逐渐下降的趋势,RF处理在不同地力水平下亦呈现出明显的优势。比较RF与FP处理施肥量发现,长江流域FP处理施肥量均值为162.5—239.5 kg N·hm~(-2)、58.6—82.0 kg P_2O_5·hm~(-2)和45.5—60.8 kg K_2O·hm~(-2),而RF处理施肥量均值则为162.2—233.6 kg N·hm~(-2)、67.2—94.1 kg P_2O_5·hm~(-2)和73.6—108.5 kg K_2O·hm~(-2),两种施肥处理氮肥用量未表现出显著的差异,FP处理磷、钾肥用量偏低。与RF处理相比,PF处理氮肥可减施的点位比例最大,长江流域45.6%的点位能够减氮,25.6%的点位可以减磷,钾肥减施点位的比例仅为13.2%。同时,需要增施氮、磷、钾肥的比例分别为37.8%、60.0%和75.9%。区域间肥料用量以长江下游适宜点位比例最大,氮、磷、钾肥适宜用量的点位比例分别为25.0%、22.8%和17.1%。长江流域FP处理的氮、磷、钾肥偏生产力均值分别为11.1—14.2、28.6—45.8和38.3—47.6 kg·kg~(-1)。RF在FP处理的基础上提高了氮肥偏生产力12.9%—15.9%,但与其他发达国家相比仍处于较低水平;而RF处理的磷、钾偏生产力与FP相比有所下降,平均降低幅度分别为6.9%和19.6%,也表明目前推荐的施肥量仍然存在减肥的空间。【结论】与农民习惯施肥相比,推荐施肥显著增加了油菜产量,且农民习惯的肥料用量存在较大的调整空间。  相似文献   

16.
基于产量的渭北旱地小麦施肥评价及减肥潜力分析   总被引:14,自引:2,他引:12  
【目的】明确小农户经营模式下小麦施肥现状,为实现旱地小麦稳产增产和养分高效利用提供依据。【方法】通过连续5年对渭北旱地1 261个农户的养分管理调研,以维持旱地小麦可持续生产为出发点,基于小麦产量确定的养分需求量,评价农户施肥量,分析农户施肥的问题及减肥潜力。【结果】调研农户小麦籽粒产量介于750—9 000 kg·hm~(-2),平均4 243 kg·hm~(-2),属于低产(2 640 kg·hm~(-2)),偏低(2 640—3 780 kg·hm~(-2)),中产(3 780—4 920 kg·hm~(-2)),偏高(4 920—6 060 kg·hm~(-2)),高产(6 060 kg·hm~(-2))等级的农户依次占22.0%,22.2%,19.3%,22.8%,13.6%。农户氮肥用量介于33—454 kg N·hm~(-2),平均188 kg N·hm~(-2);磷肥介于0—435 kg P_2O_5·hm~(-2),平均125 kg P_2O_5·hm~(-2);钾肥介于0—201 kg K_2O·hm~(-2),平均19 kg K_2O·hm~(-2),农户的施氮、磷和钾量均与小麦产量无显著相关关系。从低产到高产,施氮过量(偏高+很高)的农户比例逐渐降低,由97.8%降低到18.0%;而施氮不足(偏低+很低)的农户逐渐增多,由0.7%增加到45.9%。与氮肥类似,随着产量水平提高,施磷过量的农户比例也逐渐降低,但降低幅度小,由99.3%仅降低到70.9%,即过量施磷普遍存在。与氮、磷不同,在各产量水平下至少有60%的农户施钾不足。因此,在低产、产量偏低水平,重点是施氮量偏高或很高的农户需减肥,减幅在24—144 kg N·hm~(-2)、28%—73%氮肥;在中产、偏高和高产水平,既有减肥,也有增肥,减肥的重点是施氮量偏高或很高的农户,减幅在50—181 kg N·hm~(-2)、26%—51%氮肥,增肥的重点是施氮量偏低或很低的农户,增幅在38—134 kg N hm~(-2)、41%—345%氮肥。针对农户普遍施磷过量的问题,在不同产量水平,施磷量偏高的农户应减少7—31 kg P_2O_5·hm~(-2)、23%—33%的磷肥投入;施磷很高的农户应减少85—118 kg P_2O_5·hm~(-2),61%—85%的磷肥投入。由于钾肥用量普遍不足,施钾很低或不施的农户首先应改变不施钾肥的习惯,根据不同产量水平施用钾肥13—50 kg K_2O·hm~(-2);施钾偏低的农户,应增加7—18 kg K_2O·hm~(-2)、35%—78%的钾肥。【结论】相比于传统的施肥评价中用统一的施肥量标准去评价不同产量水平的农户施肥,本文提出了基于产量的农户施肥评价和减肥潜力分析方法,适于目前中国小农户农田经营模式,可以客观、准确认识目前农户随意和过量施肥的问题,为进行有效调控施肥提供依据。  相似文献   

17.
【目的】研究不同施氮量下,尿素与缓释氮肥掺混对大田玉米生长、干物质累积量、产量、氮肥利用率和土壤硝态氮残留的影响,为作物高效施氮管理提供理论依据。【方法】试验选用玉米品种郑单958,设置了3种氮肥类型(尿素(U)、缓释氮肥(S)、尿素缓释肥3∶7掺混(SU))和4个施氮水平(N1(90 kg·hm~(-2))、N2(120 kg·hm~(-2))、N3(180 kg·hm~(-2))、N4(240 kg·hm~(-2))),以不施氮肥(N0)为对照,共13个处理。生育期内对玉米株高、茎粗和叶面积指数进行观测,并统计干物质累积量、产量及产量构成因素。【结果】氮肥类型与施氮量及两者交互作用对玉米生长指标、干物质累积量、产量及产量构成要素都有显著的影响。尿素掺混缓释氮肥(SU)在N3施氮量下玉米最大干物质累积量和氮素累积吸收量分别为17 927.9 kg·hm~(-2)和156.1 kg·hm~(-2),较其他处理分别提高了16.0%—61.7%和8.1%—45.2%。尿素掺混缓释氮肥(SU)在N3施氮量下,产量达到最高,为6 200 kg·hm~(-2),比尿素(U)N3处理和缓释氮肥(S)N2处理的产量分别增加了19.8%和20.7%;其中,缓释氮肥处理(S)和尿素掺混缓释氮肥处理(SU)在N2施氮量下比尿素处理施氮量减少30%时,产量无显著性差异。玉米的产量并不是随着施氮量的增加而增加,尿素(U)和尿素掺混缓释氮肥处理(SU)在N3施氮量时玉米产量比N4施氮量分别增加了19.7%和19.0%,缓释氮肥处理(S)中N2施氮量的玉米产量比N3和N4施氮量分别提高10.9%和26.5%。尿素掺混缓释氮肥(SU)N3处理玉米吐丝期后营养器官中氮素向籽粒中转运量最大,比尿素(U)N3处理和缓释氮肥(S)N2处理分别增加了14.7%和8.2%,有利于促进籽粒的增产。土壤硝态氮的累积量随着施氮量的增加而增加,但是尿素掺混缓释氮肥(SU)处理的土壤硝态氮累积量比尿素(U)处理和缓释氮肥(S)处理分别平均减少21.2%和9.5%,尿素掺混缓释氮肥(SU)处理土壤硝态氮含量主要分布在0—40 cm土层,不仅促进玉米的吸收,更减少土壤氮素向更深土层的淋失,提高耕作层的土壤养分。【结论】尿素与缓释氮肥掺混,施氮量180 kg·hm~(-2)是试验区玉米高效生产的最佳施氮量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号