首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
Summary The extent and pattern of polyploidy in the tuber-bearing Solanums varies among the many taxanomic series that have been identified in this subsection of Solanum. While several series appear to be entirely diploid, others exhibit a range of ploidy levels from 2x to 6x, and some contain only polyploid species.In many diploid, triploid and tetraploid species 2n gametes (gametes or gametophytes with the sporophytic chromosome number) have been detected. Both 2n eggs and 2n pollen occur. 2n gametes provide the opportunity for unilateral and bilateral sexual polyploidization. The genetic determination and consequences of sexual polyploidization strongly suggest that 2n gametes have been the major instrument in the polyploid evolution of the tuber-bearing Solanums. Somatic doubling of species and interspecific hybrids appears to be of very limited importance.New evidence for the occurrence of 2n eggs and 2n pollen in many species is reported, and data from the literature are added to illustrate the widespread distribution of 2n gametes throughout the subsection. A very high correlation is found between polyploidy and 2n gametes, and its significance is discussed. Proof is presented for the occurrence of alleles governing 2n pollen production in the cultivated tetraploids, providing additional evidence for the hypothesis that 2n gametes have been involved in their origin.Multiple unilateral and bilateral sexual polyploidizations are proposed for the origin of the cultivated tetraploids: this accounts for the large variability encountered in this group, which closely resembles that of the related diploids. Similar evolutionary pathways are hypothesized for the other polyploid complexes in the subsection.A scheme is proposed in which participation of both 2n and n gametes link together all ploidy levels in the tuber-bearing Solanums, thus overcoming the ploidy barriers and providing for gene flow throughout the sympatric species of the subsection.Paper No. 2093 from the Laboratory of Genetics. Research supported by the College of Agricultural and Life Sciences, a gift from Frito-Lay, Inc., and grants from NIH (GM 15422) and The International Potato Center. Plant materials, unpublished chromosome counts and technical help of IR-1 are gratefully acknowledged.  相似文献   

2.
Bilateral sexual polyploidization in potatoes   总被引:5,自引:0,他引:5  
Summary Bilateral sexual tetraploidization was achieved by intercrossing diploid Phureja × haploid Tuberosum hybrids. Both parents contribute gametes with the somatic number of chromosomes (diplogynoids and diplandroids). More than 100 tetraploid progeny appeared in nine 2x–2x families. The tetraploids are generally more vigorous and significantly outyield their diploid full-sibs. The superiority of the tetraploids is interpreted on the basis of the mode of diplandroid (2n pollen) formation by first meiotic division restitution (FDR). Heterozygosis, epistasis and genetic diversity, if present in the parental diploid genotype, are largely maintained in the 2n gametes formed by FDR. and syngamy brings about more opportunities for heterotic responses in conjunction with polyploidization. Differences in tuber yield among tetraploid clones within families were found to be statistically significant (P <0.05). Thus, unlike somatic chromosome doubling, which can merely increase chromosome numbers, or somatic hybridization, which could in addition bring about heterosis, sexual polyploidization is also associated with genetic variability. The degree of inbreeding and the genotypic structure in the population of newly arisen tetraploids is discussed. The relationship among asexual reproduction, preservation of favorable nonadditive genetic effects by FDR. restoration of sexuality, and polyploidization is explored. The possible evolutionary significance of these factors is emphasized.  相似文献   

3.
Summary Resistance to bacterial wilt (Pseudomonas solanacearum) found in tuber-bearing Solanum species was transferred into a diploid potato breeding population. Simultaneous selections were made for agronomic characters, production of first division restitution (FDR) 2n pollen, and resistance. Diploid resistant genotypes were identified via inoculation with a virulent isolate (CIP-204) of race 3 of Pseudomonas solanacearum. These resistant diploid genotypes were crossed to susceptible tetraploid potatoes. An investigation was made to assess whether resistant diploid genotypes transmit resistance to bacterial wilt, which is a quantitatively inherited trait, to tetraploid potatoes via FDR 2n pollen. Tetraploid seedlings from 4x×2x crosses were inoculated with the same isolate CIP-204, and the percentage of surviving seedlings was scored. Some 4x×2x families from resistant diploid genotypes demonstrated a high level of survival rate. The transmission of bacterial wilt resistance was achieved by the use of FDR 2n pollen. It was speculated that a female x male interaction effect on the survival rate of the evaluated progeny may exist. Selecting proper 4x and 2x parents would be important for obtaining a higher frequency of transmission of resistance to bacterial wilt in the progeny.  相似文献   

4.
Summary Sexual polyploidization via the action of 2n gametes (gametes with the sporophytic chromosome number) has been identified as the most important evolutionary mode of polyploidization among plant genera. This study was conducted to determine whether 2n gametes are present in the tetraploid level of the genus Avena (2n=4×=28) Twenty tetraploid Avena lines, representing four species and one interspecific hybrid, were screened for pollen grain size in order to differentiate between n and 2n pollen. Avena vaviloviana (Malz.) Mordv. line PI 412767 was observed to contain large pollen grains at a 1.0% frequency. Cytogenetic analyses of pollen mother cells of PI 412767 revealed cells with double the normal chromosome number (i.e., 56 chromosomes at metaphase I and anaphase I). The mode of chromosome doubling was found to be failure of cell wall formation during the last mitotic division that preceded meiosis. The resulting binucleate cells underwent normal meiotic divisions and formed pollen grains with 28 chromosomes. Based on the formation and function of 2n gametes, three models involving diploid and tetraploid oat lines are proposed to describe possible evolutionary pathways for hexaploid oats. If stable synthetic hexaploid oat lines could be developed by utilizing 2n gametes from diploid and tetraploid oat species through bilateral sexual polyploidization, the resulting hexaploids could be used in breeding programs for transferring genes from diploids and tetraploids to cultivated hexaploids.  相似文献   

5.
The widespread occurrence of 2ngametes (i.e. gametes with the somatic chromosome number) in the Medicago sativa-coerulea-falcata complex supports the concept that gene flow from diploid to tetraploid species occurs continuously in nature and plays a key role in alfalfa evolution. Breeders realized early that gene transfer between ploidy levels via 2n pollen and 2n eggs would have had potential use in cultivated alfalfa improvement. Cytological investigations provided insights into the types of meiotic abnormalities responsible for the production of 2n gametes. Alterations were defined as genetically equivalent to first (FDR) or second division restitution(SDR) mechanisms. For breeding purposes,data have proven that 2n gametes of the FDR type are more advantageous than those obtained by SDR for transferring parental heterozygosity and retaining epistatic interactions. The use of diploid meiotic mutants that produce 2ngametes is now recognized as one of the most effective methods available for exploiting heterosis and introgressing wild germplasm traits into cultivated tetraploid alfalfa via unilateral (USP) and bilateral sexual polyploidization (BSP) schemes. Both2n egg and 2n pollen producers could be used for direct gene transfer from wild diploid relatives into cultivated alfalfa by means of 2x-4x and4x-2x crosses. Although data have shown that forage yield improvement can be achieved when plants are sexually tetraploidized, problems related to reduced plant fertility and seed production remain largely unexplained. Apomixis has the potential of cloning plants through seed and thus provides a unique opportunity for developing superior tetraploid cultivars with permanently fixed heterosis and epistatic effects. A main goal in alfalfa breeding could be the introduction of functional apomixis (i.e. Apomeiosis and parthenogenesis) in cultivated alfalfa stocks. In the future, the efficiency of alfalfa breeding programs based on the use of reproductive mutants could be improved by direct selection at the genotype level using RFLPs and PCR-based markers. Suitable DNA markers and detailed linkage maps of alfalfa mutants should help to discover apomictic mutants and address basic genetic issues such as the extent of genomicre combination in polyploid hybrids and the effect of sexual polyploidization on heterosis. Molecular markers have recently been used in alfalfa for studying the inheritance of 2n gamete formation and identifying polymorphisms associated to genes involved in meiotic abnormalities. Molecular tagging of 2n egg and 2n pollen formation not only should explain the genetic control and regulation of these traits, but may also be an essential step towards marker-assisted selection of 2n gamete producers and implementation of USP and BSP breeding schemes. Future perspectives include strategies for the map-based cloning of genomic DNA markers,and screening of EST mini-libraries related to flowers at different developmental stages from meiotic mutants and wild-type scan lead to the identification of mRNAs and thus of candidate genes that control 2n gamete formation in alfalfa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
L. Crespel  S. C. Ricci  S. Gudin 《Euphytica》2006,151(2):155-164
Based on the size differences found between haploid and diploid pollen produced by diploid and tetraploid rose cultivars, respectively, 2n pollen producers were identified in a population of 53 diploid hybrids from a cross between a dihaploid rose, derived from the haploidization of a tetraploid modern cultivar and the diploid species R. wichuraiana. Frequency of 2n pollen producers was estimated in 2002, 2003 and 2004. Highly variable frequencies were found i) within population; ii) during years of observation (between years and between different months in the same year). The variation of 2n pollen production could be related to environmental fluctuations. A cytological analysis of male meiosis was carried out in 10 hybrids randomly chosen. Among meiotic abnormalities leading to 2n pollen formation, triads (containing a 2n microspore at one pole and two n microspores at the other) resulting from abnormal spindle geometry were frequently observed. The mode of 2n pollen formation is genetically equivalent to a First Division Restitution (FDR) mechanism. FDR 2n pollen transmits a high percentage of the heterozygosity from the diploid parent – 2n pollen producer-to the tetraploid offspring.  相似文献   

7.
Prem P. Jauhar 《Euphytica》2003,133(1):81-94
Allopolyploidy, resulting from interspecific and intergeneric hybridization accompanied by sexual doubling of chromosomes, has played a major role in the evolution of crop plants that sustain humankind. The allopolyploid species, including durum wheat, bread wheat, and oat, have developed a genetic control of chromosome pairing that confers on them meiotic regularity (diploid-like chromosome pairing), and hence reproductive stability, and disomic inheritance. Being natural hybrids, they enjoy the benefits of hybridity as well as polyploidy that make them highly adaptable to diverse environments. Despite the complexities of sexual reproduction, it is widespread among plants and animals. Sexual polyploids are highly successful in nature. Sexual polyploidization is far more efficient than somatic chromosome doubling. Sexual polyploidization effected by functioning of unreduced (2n) gametes in the parental species or in their hybrids has been instrumental in producing our grain, fiber, and oilseed crops. Evidence is presented for the occurrence of sexual polyploidization in durum haploids. ThePh1-induced failure of homoeologous pairing is an important factor in the formation of first division restitution(FDR) nuclei and 2n gametes. The evolutionary and breeding significance of sexual polyploidization is discussed. It is emphasized that three factors, viz.,sexual reproduction, allopolyploidy, and genetic control of chromosome pairing,jointly constitute a perfect recipe for cataclysmic evolution in nature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Five tetraploid clones of potato were crossed to each of eight diploid first division restitution (FDR) 2n pollen producers and four tetraploid males using a line × tester mating design. A total of 59 families were obtained and evaluated under long days at Rhinelander (USA). A subset of 49 families were grown under short days at four Peruvian locations. Tuber yield (kg per plant) of 4x-2x families was similar to, or greater than, that of 4x-4x families in short day environments. The diploid clones had breeding values greater than or equal to those of the tetraploid clones. Only families derived from FDR 2n pollinators combined high tuber yield with stability and high dry matter content. Reciprocal recurrent selection would be the best breeding scheme, in which the diploids are testers of the tetraploids and vice-versa. Intra-population improvement could be achieved through phenotypic recurrent selection. The best materials from both breeding pools could then be crossed to produce tetraploid hybrids through unilateral sexual polyploidization (4x-2x crosses).  相似文献   

9.
Summary In this study, nineteen diploid potato clones (Solanum spp. 2n=2x=24) were identified as 2n egg producers on the basis of fruit set in 2x–4x crosses. The segregation of three genes mapped close to the centromere, Got-1 (1.1 cM), Pgm-2 (2.0 cM), and Sdh-1 (8.3 cM), were analyzed in the tetraploid offspring in these 2x–4x crosses to discriminate between First Division Restitution (FDR) and Second Division Restitution (SDR) modes of 2n egg formation. The co-dominant nature of these markers lead to more precise estimates of the recombinational frequencies as a result of completely classifying the segregating progenies. 2x–4x data revealed a predominance of SDR mechanisms occurring in 20 of the 21 families analyzed. With a SDR mode established, half-tetrad analysis (HTA) of four distal loci, 6-Pgdh-3, Mdh-1, Pgi-1, and Aps-1, revealed two SDR segregation patterns in some of the families. One pattern fit the expectations for the distal arm position. The gene-centromere map distances based upon SDR modes in the families following this pattern, were generally close to 4x–2x (FDR) estimates suggesting similar recombination rates between micro- and mega-sporogenesis. Heterozygosity transmission, on average, was 39.1%. In the other segregation pattern, in which the diploid parents were derived from S. chacoense PI 230580, higher than expected homozygosity levels were found in the female 2n gametophyte populations. A post-meiotic doubling of the reduced megaspore, which generates homozygous 2n eggs, is suggested to operate in three families. The common genetic background of the diploid clones suggested a heritable nature of this mechanism. Pooled data from these three deviant families calculated that 1.8% of the heterozygosity was transmitted to the tetraploid progeny.It is concluded that utilization of seven enzyme-coding loci, with previously established gene-centromere map distances, in 2x–4x crosses improved half-tetrad analysis (HTA) as a means to determine the mode of 2n gamete formation in megasporogenesis and megagametogenesis of diploid Solanum species.  相似文献   

10.
C. H. Park  P. D. Walton 《Euphytica》1990,45(3):217-222
Summary Fifty four hybrid plants between Elymus canadensis and Psathyrostachys juncea were obtained by handpollination and embryo culture. The average cross compatibility between both species was 31.2 percent. One amphiploid plant was induced by colchicine treatment. The hybrid and amphiploid plants resembled P. juncea in appearance but showed a higher plant height and dry matter yield than the parents. The hybrids showed extremely low pollen stainability and were completely sterile. With the exception of one plant (2n=3x+1=22), all hybrid plants were allotriploids (SHN, 2n=3x=21). The amphiploid plant (SSHHNN, 2n=6x=42) showed 58.9% pollen stainability and 11.6% seed fertility.Mean chromosome associations of the hybrids and amphiploid at metaphase I were 0.02IV+0.06III+2.03II+16.91I and 0.07III+18.00II+5.85I, respectively. Lagging chromosomes, chromosome bridges, abnormal cytokinesis, and micronuclei were occasionally observed at the anaphase, telophase, or tetrad stage.  相似文献   

11.
The F1 hybrids of seven diploid Alstroemeria species (2n=2x=16) were investigated for the production of numerically unreduced (2n) gametes and their mode of origin. Based on a survey of 17 interspecific hybrid combinations,consisting of 119 genotypes, it was found that the F1 hybrids of Chilean-Brazilian species mostly produced first division restitution (FDR) 2n gametes. These F1 hybrids were self-pollinated in order to obtain F2 seeds, which was an indication that the F1 plants also produced 2neggs simultaneously. All the F2 progeny plants were typical allotetraploids, most of which formed 16 bivalents and a small proportion formed multivalents during metaphase I stages of meiosis. Through genomic in situ hybridisation (GISH) it was proved that multivalent formation in F2plants, derived from A. inodora ×A. pelegrina hybrid, was due to homoeologous recombination but not from reciprocal translocations. In order to test the segregation pattern of the recombinant chromosomes, an F3 population from one genotype, P6C49-6, was investigated. The recombinant chromosomes assorted independently from each other supporting the hypothesis that the segregation of chromosomes in ring quadrivalents did not behave like those in translocation heterozygotes. It was concluded that in allopolyploids of Alstroemeria,bilateral sexual polyploidisation could accomplish genetic recombination by both homoeologous crossing-over as well as through the assortment of chromosomes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Fingerprinting of alfalfa meiotic mutants using RAPD markers   总被引:5,自引:0,他引:5  
Summary A calendar of female sporogenesis and gametogenesis was made for both apomictic tetraploid (2n=4x=36) Brachiaria brizantha and Brachiaria decumbens and their apomictic F1 hybrids with sexual tetraploid (2n=4x=36) Brachiaria ruziziensis. Microgametogenesis was used as a reference. Apospory was facultative in both species and hybrids. Environmental conditions had variable effects on the level of apomixis according to each genotype. Ratios of segregation into sexuals and apomicts in the interspecific hybrids suggest an oligogenic determinism with dominant apomixis in the genus Brachiaria. Highly apomictic and partially male fertile hybrids were identified and will be used in an improvement program to transfer genes for apomixis into the sexual species B. ruziziensis.  相似文献   

13.
Haploidisation by in situ parthenogenesis of 4x R. hybrida resulted in the production of some dihaploid roses (2n=2x=14) able to produce viable pollen. A cytological study of microsporogenesis revealed that, although the first meiotic reductional division occurred normally, the second (equational) division was characterised by frequent abnormalities which concerned spindle formation and led to unreduced gametes of First Division Restitution (FDR) type. Analysis of the hybrid progeny of a parthenogenetically derived male fertile dihaploid plant revealed a selective advantage of the 2n-pollen, especially in the case of an hybridization with a tetraploid female parent. Moreover, crosses carried out among dihaploid partners always resulted in hybrids with ploidy levels≥ 3x. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Cytological modes of the origin of 2n gametes were investigated in six different genotypes of F1 hybrids between Oriental and Asiatic (OA) lilies (Lilium, 2n = 2x = 24). Chromosome pairing between the parental genomes was very low, the average frequency range from 0.3 to 1.2 bivalents per cell among the genotypes. Within a genotype the frequency of bivalents varied from 0 to 6 in some cases. The normally occurring haploid pollen grains were totally sterile. In contrast, in different genotypes, variable percentages of 2n pollen were found and shown to be fertile as estimated from pollen germination. A cytological analysis of Metaphase I and subsequent stages of meiosis using genomic in situ hybridization (GISH) revealed that there was intergenomic recombination between the alien genomes. Following Metaphase I stage, three different types of abnormal cytological events led to the formation of 2n pollen: (i) Post-Metaphase I division (PMI), (ii) Post-Metaphase II division (PMII) and (iii) Asymmetric Cytokinesis of the pollen mother cell followed by chromosome division. All three cytological events led to first division restitution (FDR) gametes. Based on in vitro pollen germination it was proved for two genotypes that 2n pollen was viable only during the first day of anthesis. It was possible to use 2n pollen successfully for backcrossing. Implications of 2n pollen for intergenomic recombination in BC1 progenies are discussed.  相似文献   

15.
Many diploid rose species and cultivars possess valuable traits that can be introgressed into modern tetraploid cultivars. Interspecific, interploidy crosses are possible, but triploid hybrids typically have limited fertility, hindering further breeding and selection. Tetraploidizing diploids before mating with tetraploids can alleviate fertility barriers. The efficiency of trifluralin was investigated for polyploidization of Rosa chinensis minima (2n = 2x = 14) seedlings. Treatments were trifluralin at 0.086% and 0.0086%, colchicine (0.5%), and distilled water and contained 2% dimethyl sulfoxide and a surfactant. Approximately 5 l of the treatment solution was applied to the apical meristem of seedlings (N = 337, 82–85 per treatment) in the process of cotyledon expansion. Guard cell length, pollen diameter, and root tip squashes of rooted cuttings were used to detect polyploidy in meristematic layer (L)I, LII, and LIII, respectively. Trifluralin (0.086%) was the most effective treatment for polyploidization (LI 20.2%, LII 12.9%, LIII 12.9%), followed by trifluralin (0.0086%) (LI 10.6%, LII 7.1%, LIII 4.7%) and colchicine (LI 2.4%, LII 0%, LIII 0%). Polyploidization consistently occurred from LI inward. Polyploids as a group had reduced pollen stainability and a lower leaflet length to width ratio than diploids. In addition, two diploid seedlings were identified which produce 2n pollen. Considerations in selecting germplasm and generating somatically-induced polyploids from seedlings versus clones for use in breeding are discussed.  相似文献   

16.
Summary Interspecific crosses were made to introduce the scent of flowers of C. purpurascens into C. persicum cultivars and ovule culture was used to rescue the abortive hybrid embryos. Cultivars of C. persicum diploid (CPD, 2n=2×=48) and C. persicum tetraploid (CPT, 2n=4×=96) were the pistillate parents and wild species of C. purpurascens (CP, 2n=34) were staminate parents. After pollination, crossed ovaries were collected periodically and examined using paraffin sections. Histological observations suggested that both hybrid ovules of CPD x CP and CPT x CP should be transferred to culture medium 35 days after pollination. Based up on this observation, crossed ovaries were collected 28 days after pollination and ovules with placenta were transferred to MS (1962) medium containing 3% sucrose. These ovules were cultured in the dark at 25° C. The hybrids (2n=41) derived from CPD x CP had the scent of C. purpurascens, whereas the hybrids (2n=65) derived from CPT x CP had the scent of C. persicum. Although both hybrids had complete genomes from the parents and produced a few viable pollen grains, they failed to yield viable seeds by self- and cross-pollination with fertile pollen grains of C. persicum cultivars.Abbreviations CPD C. persicum diploid - CPT C. persicum tetraploid - CP C. purpurascens  相似文献   

17.
To study the origin of unreduced (2n) gametes in diploid Vitis cultivars, we surveyed the occurrence of tetraploid hybrid seedlings from 40 interploid crosses with five tetraploid and seven diploid cultivars. A total of 250 seedlings from the interploid crosses were established through embryo culture and by seed sowing. In 20 2x × 4x crosses, no tetraploid hybrid seedlings were derived from 8,902pollinations. In 20 4x × 2x crosses, two tetraploid hybrid seedlings were obtained from 8,057 pollinations. Investigation of isozyme genotypes of the two tetraploid seedlings using three variable enzyme systems indicated that one of the two seedlings resulted from the union of a diploid egg with a 2n male gamete and that failure of second meiotic division resulted in the formation of the 2n male gamete. The percentage of giant pollen grains in `Muscat Bailey A', a pollen parent of the tetraploid seedling, was relatively high(about 5.9%) and 10.9% of the giant pollen grains germinated on agar medium. These results suggested that 2n pollen of diploid cultivars are useful for breeding tetraploid grape. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Summary Plants of Lolium perenne, L. multiflorum and L. hybridum (331, 51 and 18, respectively) were screened for 2n pollen production. The screening was based on the size differences that are expected to be found between n and 2n pollen of a plant. It was found that 28 plants of perennial ryegrass-belonging to 13 cultivars-produced produced pollen grains of heterogenous size (big and small). The estimated frequency of big pollen grain production was higher than 10% in ten out of 28 plants and in three of them it reached a value of 100%. Eight plants obtained from two 4x × 2x crosses, in which the male parent had been previously identified as producing pollen grains of heterogenous size, was tetraploid. The cytological mechanism of big pollen grain formation observed in three plants consists in the lack of spindle formation and, consequently, of chromosome migration in anaphase II. From these breeding and cytological results, it was concluded that the big pollen grains observed were viable 2n pollen grains. The nuclei of the 2n pollen grains produced by this mechanism are genetically equivalent to those formed by the restitution of the second meiotic division. The value of these gametophytes in a breeding program of Lolium is discussed.  相似文献   

19.
Summary Solanum commersonii Dun. is a diploid (2n=2x=24, 1EBN) wild species of potential value for potato breeding. It is a reproductively isolated species and cannot be crossed with Tuberosum haploids (2n=2x=24, 2EBN) or other diploid 2EBNSolanum species. In order to overcome the EBN barriers, triploid hybrids were produced between Phureja-Tuberosum haploid hybrids, which form 2n pollen grains by parallel spindles, and tetraploidS. commersonii. Microsporogenesis analysis of the triploids indicated a trend towards low values of chromosome distribution at Anaphase I; lagging chromosomes were often observed as well. Despite these abnormalities, the percentage of stainable pollen was very high, ranging from 5.0% to 74.3%. A high variation in pollen grain diameter was also evident. Parallel and tripolar orientation of spindles at Metaphase II of microsporogenesis was a common feature of all the triploids analyzed, but dyads and triads were observed at a very low frequency. Therefore, also the frequency of 2n pollen was very low; the different size of stainable pollen appears to represent the ploidy levels which are possible according to the distribution of chromosomes in Anaphase I. The results obtained also suggest thatS. commersonii could have minor genes acting at the end of meiosis in such a way that, despite the presence of parallel/tripolar spindles, dyads/triads are not formed.Contribution no. 124 from the Research Center for Vegetable Breeding.  相似文献   

20.
With the aim of utilizing allotriploid (2n = 3x = 36) lily hybrids (Lilium) in introgression breeding, different types of crosses were made. First, using diploid Asiatic lilies (2n = 2x = 24), reciprocal crosses (3x − 2x and 2x − 3x) were made with allotriploid hybrids (AOA) obtained by backcrosses of F1 Oriental × Asiatic hybrids (OA) to Asiatic cultivars (A). Secondly, the AOA allotriploids were crossed with allotetraploid (OAOA, 2n = 4x = 48), in 3x − 4x combination. Finally, the AOA allotriploids where crossed to 2n gamete producer F1 OA hybrids (3x − 2x (2n)). Two types of triploids were used as parents in the different types of crosses, derived from: (a) mitotic polyploidization and (b) sexual polyploidization. Ploidy level of the progeny was determined by estimating the DNA values through flowcytometry as well as chromosome counting. The aneuploid progeny plants from 3x − 2x and reciprocal crosses had approximate diploid levels and in 3x − 4x crosses and 3x − 2x (2n) the progeny had approximate tetraploid levels. Balanced euploid gametes (x, 2x and 3x) were formed in the AOA genotypes. Recombinant chromosomes were found in the progenies of all crosses, except in the case of 2x − 3x crosses through genomic in situ hybridization (GISH) analyses. Recombinant chromosomes occurred in the F1 OA hybrid when the triploid AOA hybrid was derived through sexual polyploidization, but not through mitotic polyploidization with two exceptions. Those recombinant chromosomes were transmitted to the progenies in variable frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号