首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
潘逸  张昊  罗文  徐进  许景升  冯洁 《植物保护》2015,41(4):121-124
为了研究甘薯不同生育时期感染甘薯病毒病(SPVD)对甘薯产量的影响,并建立产量损失估计模型,以‘郑薯20’和‘徐薯25’两个甘薯品种为试验材料,分4个时间嫁接感染 SPVD。试验结果表明,感染 SPVD 的甘薯病情指数随着嫁接时间推迟而降低,叶绿素含量随嫁接时间推迟而逐渐提高,单株鲜重和干重随着嫁接时间的推迟逐渐增加。根据2012年试验结果,建立了病情指数(X)与产量损失率(Y)之间的关系模型:Y =0.7276X +23.279,R2=0.8845,并利用2013年试验数据对模型进行了验证。  相似文献   

2.
为了研究甘薯不同生育时期感染甘薯病毒病(SPVD)对甘薯产量的影响,并建立产量损失估计模型,以‘郑薯20’和‘徐薯25’两个甘薯品种为试验材料,分4个时间嫁接感染SPVD。试验结果表明,感染SPVD的甘薯病情指数随着嫁接时间推迟而降低,叶绿素含量随嫁接时间推迟而逐渐提高,单株鲜重和干重随着嫁接时间的推迟逐渐增加。根据2012年试验结果,建立了病情指数(X)与产量损失率(Y)之间的关系模型:Y=0.727 6 X+23.279,R2=0.8845,并利用2013年试验数据对模型进行了验证。  相似文献   

3.
为初步探究鲜食玉米对草地贪夜蛾 Spodoptera frugiperda的抗性水平, 在田间草地贪夜蛾自然发生条件下对28个不同类型(甜玉米10个、甜糯玉米8个、糯玉米10个)的鲜食玉米品种进行了心叶期抗虫性鉴定, 研究了不同抗性水平及不同类型鲜食玉米的产量损失; 在室内研究了取食不同品种玉米苗对草地贪夜蛾幼虫发育历期的影响。经鉴定, 28个品种中无高抗及抗虫品种, 中抗品种12个, 感虫品种15个, 高感品种1个, 分别占鉴定资源总数的42.86%、53.57%和3.57%。28个品种的产量损失为8.30%~40.93%, 室内喂饲后幼虫的发育历期为11.29~15.31 d。不同类型鲜食玉米的叶部受害级别、产量损失和草地贪夜蛾幼虫发育历期无显著差异。甜玉米、糯玉米的叶部受害级别与产量损失呈正相关, 相关系数分别为0.61和0.79, 甜糯玉米的叶部受害级别与产量损失不相关。  相似文献   

4.
为评价东北地区玉米主推品种对禾谷镰孢根腐病的抗性水平,探究根腐病发生与苗势、产量损失间的关系,采用人工接种方法鉴定东北地区117个玉米主推品种对禾谷镰孢根腐病的抗性水平,应用室内盆栽试验分析自交系LN810在施用氮、磷、钾及复合肥后对禾谷镰孢根腐病发生和苗势的影响,在田间对先玉335接种禾谷镰孢菌Fusarium graminearum后探究根腐病发生程度对其苗势及产量的影响。结果显示,117个玉米品种对禾谷镰孢根腐病的抗性差异明显,鉴定出高抗品种14个,抗病品种44个,中抗品种47个,感病品种12个,其中表现中抗以上的品种占89.74%,且中早熟材料均表现为抗性。与未施肥相比,施用磷钾肥后玉米禾谷镰孢根腐病发生率最低,为22.03%。按照禾谷镰孢根腐病发生程度从轻到重将先玉335群体划分为一、二、三类苗,级别越高苗势越弱,产量测定发现二、三类苗的平均产量较一类苗的平均产量分别下降了39.97%和76.39%。表明东北地区主推玉米品种大部分对禾谷镰孢根腐病表现出抗性,但仍有部分品种存在较大感病风险,且该病害的发生程度与幼苗长势和产量呈负相关,施用磷钾肥可降低该病害的发生率。  相似文献   

5.
水稻品种抗黑条矮缩病人工接种鉴定方法   总被引:6,自引:1,他引:5  
为建立科学有效的水稻品种抗黑条矮缩病人工接种鉴定方法,分别研究了病毒在介体体内的循回时间、接种时间、接种强度、水稻接种苗龄4个因素对鉴定效果的影响。结果显示,病毒在介体体内的循回时间为12~15天或21~24天条件下,鉴定效果优于8~11天和16~17天处理;接种48~72 h条件下,鉴定效果优于12~24 h处理;有效接种强度4~20虫/苗条件下,鉴定效果优于1~3虫/苗处理;水稻接种苗龄0.5~2.5叶龄条件下,鉴定效果优于2.5~3.5叶龄处理。由此构建了水稻抗黑条矮缩病人工接种鉴定方法:循回时间为12~15天、接种时间48~72 h、有效接种强度4~20虫/苗和水稻接种苗龄0.5~2.5叶。在此条件下对不同抗性表现的水稻品种进行鉴定,其鉴定结果与重病区田间鉴定没有显著性差异,表明所建立的人工接种鉴定方法能客观地反映水稻品种对黑条矮缩病的抗性水平。  相似文献   

6.
不同小麦品种资源苗期和成株期麦长管蚜抗性鉴定和分析   总被引:2,自引:2,他引:0  
为明确小麦苗期和成株期与麦长管蚜抗性的关系,2010—2012年采用蚜量比值法对94个小麦品种进行了温室苗期人工接种和田间成株期自然感蚜麦长管蚜抗性鉴定。结果表明,43个品种连续3年在成株期对麦长管蚜表现不同程度的抗性,其中高抗品种2个,中抗品种8个,低抗品种33个;45个品种在苗期对麦长管蚜表现不同程度的抗性,其中高抗品种5个,中抗品种16个,低抗品种24个;30个品种在苗期和成株期同时表现抗蚜,占供试品种的31.91%,其中C273和兰麦(陕西柞水)在苗期和成株期均表现为高抗;小麦品种在温室苗期人工接种和田间成株期自然感蚜的蚜量比值呈极显著正相关,苗期和成株期麦长管蚜抗性表现一致的共有66个品种,占供试材料的70.21%。研究表明温室苗期人工接种是快速鉴定小麦品种麦长管蚜抗性的有效方法。  相似文献   

7.
香石竹不同品种对镰刀菌枯萎病的抗性评价   总被引:8,自引:0,他引:8       下载免费PDF全文
连续2年以土壤接种方法对30个香石竹品种进行田间镰刀菌枯萎病抗性鉴定。结果表明,品种间抗性存在明显差异。30个品种中没有发现免疫品种,其中高抗品种占所鉴定总数的16.7%,中抗占40.0%,中感占13.3%,高感占30.0%。在所有鉴定的品种中,红色品种抗性较低,70%属感病品种;复色品种抗性较高,89%为抗病品种。依相对抗性指数,两个年度间的相对抗性无显著差异,鉴定结果可靠,建议将此方法作为我国香石竹对镰刀菌枯萎病田间抗性评价的基本方法。  相似文献   

8.
青海省小麦种质资源对大麦黄矮病毒的抗性鉴定   总被引:1,自引:1,他引:0  
为明确青海省不同小麦种质资源对大麦黄矮病毒(Barley yellow dwarf virus,BYDV)的抗性差异,于2014—2015年采用堆测法人工接种鉴定了178份种质资源的抗病性。结果显示,不同小麦种质资源对黄矮病的抗性存在较大差异,甘A100、川766、陕1059、兰麦-2的病情指数依次为14.83、23.60、23.99和24.66,表现出较好的抗病性;病情指数在50.00以上的高感品种有69份,包括尕老汉、白板麦、兴热密穗等,其中白板麦病情指数高达72.35,高于感病对照阿勃;其余种质资源病情指数在25.00~50.00之间,表现为感病;甘A101、甘A99、藏515、藏519、木汉麦、群科大白麦、拉胎板麦、小红麦-2和朗县折达25初期表现感病,后期恢复健康,有一定的耐病性;抗病性不同的种质资源感染BYDV后,对小麦产量的影响差异很大,抗病对照中4产量损失8.96%,耐病品种产量损失在13.64%~19.74%之间,高病品种尕老汉产量损失达41.91%,表明小麦种质资源中抗BYDV的品种极少。  相似文献   

9.
麦类品种与种质资源对大麦黄矮病毒GAV的田间抗性鉴定   总被引:2,自引:2,他引:0  
为明确不同小麦品种对大麦黄矮病毒(Barley yellow dwarf viruses, BYDV)GAV的抗性差异,采用堆测法田间人工接种鉴定了215份小麦品种及种质资源的抗病性.结果表明,不同材料对黄矮病的抗病性存在较大差异,00中13、中4、西农979、临优21号、878和H9020-17-25-6-4的病情指数分别为18.9、9.6、16.3、21.1、21.1和22.6,表现出较好的抗病性;荔高6号、偃展4110、新麦13、豫麦49、徐麦856、金穗1号、中国春和7182的病情指数分别为68.9、55.2、58.5、54.0、56.2、51.5、55.8和53.0,均高于50.0,表现为高感;其余材料病情指数在25.0~50.0之间,表现为感病.此外,红须麦、豫麦34、小冰麦和晋麦47初期表现感病,后期恢复健康,有一定的耐病性.抗病性不同的小麦品种感染GAV后,对小麦产量的影响差异很大,抗病品种如中5产量损失为5.6%,中4产量损失7.6%,耐病品种小冰麦、晋麦47和红须麦的产量损失依次为19.9%、15.2%和18.3%,而感病品种荔高6号产量损失达到47.5%.  相似文献   

10.
内蒙古自治区主栽马铃薯品种对黄萎病的抗性鉴定   总被引:1,自引:0,他引:1  
为明确内蒙古自治区主栽马铃薯品种对黄萎病的抗性情况,于2016年分别在内蒙古自治区乌兰察布市凉城县、锡林郭勒盟正蓝旗、锡林郭勒盟多伦县3个试验田对16个马铃薯品种抗性进行鉴定。试验采用室内与田间鉴定相结合,通过调查地上部植株和地下部块茎的发病程度评价马铃薯品种的抗性。室内抗性鉴定结果显示,在所测定的16个马铃薯品种中,抗病品种有3个(10≤病情指数20),占总品种的18.75%;中抗品种有8个(20≤病情指数35),占总品种的50.00%;感病品种有5个(病情指数≥35),占总品种的31.25%,未发现免疫和高抗品种。田间人工病圃和自然病圃抗性鉴定结果显示,部分品种在不同地区的抗性表现不稳定,其中合作88在不同地区的抗性水平较强,适合在黄萎病流行地区种植,从而达到防病增产的目的。  相似文献   

11.
Sweet potato virus disease (SPVD) is the name used to describe a range of severe symptoms in different cultivars of sweet potato, comprising overall plant stunting combined with leaf narrowing and distortion, and chlorosis, mosaic or vein-clearing. Affected plants of various cultivars were collected from several regions of Uganda. All samples contained the aphid-borne sweet potato feathery mottle potyvirus (SPFMV) and almost all contained the whitefly-borne sweet potato chlorotic stunt closterovirus (SPCSV). SPCSV was detected by a mix of monoclonal antibodies (MAb) previously shown to react only to a Kenyan isolate of SPCSV, but not by a mixture of MAb that detected SPCSV isolates from Nigeria and other countries. Sweet potato chlorotic fleck virus (SPCFV) and sweet potato mild mottle ipomovirus (SPMMV) were seldom detected in SPVD-affected plants, while sweet potato latent virus (SPLV) was never detected. Isolates of SPFMV and SPCSV obtained by insect transmissions together induced typical symptoms of SPVD when graft-inoculated to virus-free sweet potato. SPCSV alone caused stunting and either purpling or yellowing of middle and lower leaves when graft-inoculated to virus-free plants of two cultivars. Similarly diseased naturally inoculated field plants were shown consistently to contain SPCSV. Both this disease and SPVD spread rapidly in a sweet potato crop.  相似文献   

12.
Aritua  Legg  Smit  & Gibson 《Plant pathology》1999,48(5):655-661
A study compared the spread of sweet potato virus disease (SPVD) into crops of two moderately resistant and initially SPVD-free sweet potato cultivars in northern and southern Mpigi, Uganda. Whiteflies, the vector of sweet potato chlorotic stunt crini virus (SPCSV), a component cause of SPVD, were similarly abundant in farmers' sweet potato fields around Namulonge in northern Mpigi, and Kanoni in southern Mpigi. However, mean incidence of SPVD in farmers' crops neighbouring the trials was higher at Kanoni (13.3%) than at Namulonge (2.8%). Furthermore, spread of SPVD into initially SPVD-free sweet potato plots of two only moderately resistant cultivars was greater in plots at Kanoni than in plots at Namulonge. The SPVD-resistant New Kawogo was the most common cultivar grown in farmers' fields at Namulonge and had few diseased plants, whereas susceptible cultivars with relatively high incidences of disease predominated at Kanoni. Final SPVD incidence in each trial was positively correlated with a measure combining the proximity and level of inoculum in surrounding fields. The study demonstrates the importance of local SPVD inoculum in determining the rate of spread of the disease into fields and implies that the widespread cultivation of a resistant variety limits infection of susceptible cultivars grown nearby.  相似文献   

13.
甘薯病毒病害(Sweet potato virus disease,SPVD)是由毛形病毒属(Crinivirus)的甘薯褪绿矮化病毒(Sweet potato chlorotic stunt virus,SPCSV)和马铃薯Y病毒属(Potyvirus)的甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)协生共侵染甘薯引起的病毒病害[1].  相似文献   

14.
Yield reductions ofca 50% or more were observed in field plots infected with both sweet potato feathery mottle virus (SPFMV) and sweet potato sunken vein virus (SPSVV) (‘complex’), compared with plots planted with virus-free propagation stocks. No yield reductions were observed in a plot planted with SPFMV-infected cuttings. In plots infected with SPSVV alone, no significant effect on tuber yields was observed in one year, whereas in the second year there was aca 30% reduction in yield compared with virus-free control plants. Reinfection in the field, in the absence of introduced infection sources, was observed only with SPSVV. However, natural spread resulted when SPFMV-infected source plants were introduced. This implies that aphid vectors were present during the growing season, but that SPFMV infection sources were absent from the area.  相似文献   

15.
Novel and severe symptoms of chlorosis, rugosity, leaf strapping and dark green islands, designated as sweetpotato severe mosaic disease (SPSMD), were caused by dual infection of Sweet potato mild mottle virus (SPMMV; Ipomovirus ) and Sweet potato chlorotic stunt virus (SPCSV; Crinivirus ) in three East African sweetpotato cultivars (Tanzania, Dimbuka and New Kawogo). The storage root yield was reduced by ∼80%, as compared with healthy plants under screenhouse conditions in Uganda. Plants infected with SPMMV or SPCSV alone showed nonsignificant or 50% yield reduction, respectively. SPCSV reduced resistance to SPMMV in sweetpotato, similar to the situation with resistance to Sweet potato feathery mottle virus (SPFMV; Potyvirus ) that breaks down following infection with SPCSV, followed by development of sweet potato virus disease (SPVD). In single virus infections with SPMMV and SPFMV or their coinfection, cvs Tanzania and Dimbuka were initially systemically infected, displayed symptoms and contained readily detectable virus titres, but new leaves were symptomless with very low virus titres, indicating recovery from disease. In contrast, cv. New Kawogo remained symptomless and contained low SPMMV and SPFMV titres following graft inoculation. These moderate and high levels of resistance to SPMMV and SPFMV, respectively, were lost and cultivars succumbed to a severe disease following coinfection with SPCSV. The synergistic interactions increased titres of SPMMV and SPFMV RNA by ∼1000-fold as quantified by real-time PCR, whereas SPCSV titres were reduced twofold, indicating an antagonistic interaction. Coinfection with SPMMV and SPFMV caused no detectable changes in virus titres or symptom severity.  相似文献   

16.
Sweet potato leaf curl virus (SPLCV) infects sweet potato and is a member of the family Geminiviridae (genus Begomovirus). SPLCV transmission occurs from plant to plant mostly via vegetative propagation as well as by the insect vector Bemisia tabaci. When sweet potato seeds were planted and cultivated in a whitefly‐free greenhouse, some sweet potato plants started to show SPLCV‐specific symptoms. SPLCV was detected by PCR from all leaves and floral tissues that showed leaf curl disease symptoms. More than 70% of the seeds harvested from SPLCV‐infected sweet potato plants tested positive for SPLCV. SPLCV was also identified from dissected endosperm and embryos. The transmission level of SPLCV from seeds to seedlings was up to 15%. Southern blot hybridization showed SPLCV‐specific single‐ and double‐stranded DNAs in seedlings germinated from SPLCV‐infected seeds. Taken altogether, the results show that SPLCV in plants of the tested sweet potato cultivars can be transmitted via seeds and SPLCV DNA can replicate in developing seedlings. This is the first seed transmission report of SPLCV in sweet potato plants and also, to the authors' knowledge, the first report of seed transmission for any geminivirus.  相似文献   

17.
Virus-related degeneration constrains production of quality sweet potato seed, especially under open field conditions. Once in the open, virus-indexed seed is prone to virus infection leading to decline in performance. Insect-proof net tunnels have been proven to reduce virus infection under researcher management. However, their effectiveness under farmer-multiplier management is not known. This study investigated the ability of net tunnels to reduce degeneration in sweet potato under farmer-multiplier management. Infection and degeneration were assessed for two cultivars, Kabode and Polista, grown in net tunnels and open fields at two sites with varying virus pressures. There was zero virus incidence at both sites during the first five generations. Sweet potato feathery mottle virus and sweet potato chlorotic stunt virus were present in the last three generations, occurring singly or in combination to form sweet potato virus disease. Virus infection increased successively, with higher incidences recorded at the high virus pressure site. Seed degeneration modelling illustrated that for both varieties, degeneration was reduced by the maintenance of vines under net tunnel conditions. The time series of likely degeneration based on a generic model of yield loss suggested that, under the conditions experienced during the experimental period, infection and losses within the net tunnels would be limited. By comparison, in the open field most of the yield could be lost after a small number of generations without the input of seed with lower disease incidence. Adopting the technology at the farmer-multiplier level can increase availability of clean seed, particularly in high virus pressure areas.  相似文献   

18.
Abstract

The distribution of two sweet potato potyviruses, FMV and SPLV, was assessed in three plants infected with both viruses and in one plant infected with FMV only. All leaves, the top and basal sections of the main stem, and branch sections were tested by ELISA. Both symptomless leaves and leaves showing symptoms including purple rings, chlorotic spots, mottle or discoloration were found to contain the viruses. However, neither could be detected in every leaf or stem piece. SPLV was found in a lower proportion of leaf and stem samples than FMV. This indicates that the two viruses are either very unevenly distributed within sweet potato plants or that the virus concentration in some parts is below the detectable level. Testing of each leaf is recommended for reliable virus indexing of small, meristem‐derived sweet potato plantlets, if the ELISA method is used. Additional indexing of all ELISA‐negative materials by grafting to susceptible indicator plants is nevertheless still necessary.  相似文献   

19.
山东甘薯主要病毒的鉴定及多样性分析   总被引:6,自引:2,他引:4  
为明确山东省甘薯病毒病发生现状,在重病区调查采样,通过鉴别寄主、电镜和分子检测技术明确主要病毒种类;并克隆病毒外壳蛋白基因序列,利用Mega 5.0构建系统进化树进行遗传分析。结果显示,巴西牵牛嫁接甘薯染病枝条后叶片黄化、褪绿及皱缩;病样组织中存在大量600~900 nm的线状病毒粒子和柱状内含体。24份病样中检测到甘薯羽状斑驳病毒、甘薯潜隐病毒、甘薯G病毒、甘薯曲叶病毒和甘薯褪绿矮化病毒5种病毒,其中23份为复合侵染,存在11种侵染类型。遗传分析显示山东省甘薯羽状花叶病毒主要为EA、O和C株系,甘薯潜隐病毒与周边省份分离物相近,甘薯G病毒与中国海南和美国分离物相近,甘薯曲叶病毒分属3个株系。表明山东地区甘薯病毒种类繁多,侵染模式复杂,病毒遗传结构具有多样性。  相似文献   

20.
The Bzura commercial potato cultivar was transformed by sense or antisense constructs which included the coat protein gene of potato leafroll virus RNA. In the sense construct, the coat protein gene was preceded by a leader sequence shorter than that in the subgenomic RNA formed in infected cells. The antisense construct consisted of a sequence complementary to the first 2020 nucleotides of the subgenomic RNA. Selected transformants expressing viral RNA were resistant to virus challenge by viruliferous aphids. In one line, expression of the antisense RNA prevented virus infection even after grafting with scions from infected plants and therefore this transformant might be regarded as virus immune.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号