首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Potato mop‐top virus (PMTV), the cause of spraing in potato tubers, is transmitted by Spongospora subterranea, the cause of powdery scab, and by planting infected seed tubers. This study was undertaken to determine the relative importance of these sources of infection in seed potato production in Scotland. The transmission of PMTV from tested seed tubers to daughter plants was examined over 2 years and six cultivars. The development of foliar symptoms varied with year and cultivar. Infection of daughter tubers derived from PMTV‐infected seed tubers was more prevalent on plants affected by foliar symptoms than those without symptoms. The rate of transmission of PMTV from infected seed tubers to daughter tubers ranged from 18 to 54%. Transmission was affected by cultivar and by origin of seed tubers used for a cultivar, but not by a cultivar's sensitivity to PMTV infection. The incidence of PMTV in daughter tubers of cv. Cara grown from seed potatoes from one source (common origin) by more than 25 seed producers was examined over two successive generations. The incidence of PMTV in daughter tubers was not correlated with that in the seed tubers but appeared to be strongly associated with soil inoculum. The incidence of PMTV was correlated with powdery scab in those crops in which both were present. There was some evidence from soil tests conducted in 2006 using a tomato bait plant and real‐time RT‐PCR that planting PMTV‐infected seed potatoes could increase the risk of introducing the virus into land not infested by PMTV.  相似文献   

2.
山东甘薯主要病毒的鉴定及多样性分析   总被引:6,自引:2,他引:4  
为明确山东省甘薯病毒病发生现状,在重病区调查采样,通过鉴别寄主、电镜和分子检测技术明确主要病毒种类;并克隆病毒外壳蛋白基因序列,利用Mega 5.0构建系统进化树进行遗传分析。结果显示,巴西牵牛嫁接甘薯染病枝条后叶片黄化、褪绿及皱缩;病样组织中存在大量600~900 nm的线状病毒粒子和柱状内含体。24份病样中检测到甘薯羽状斑驳病毒、甘薯潜隐病毒、甘薯G病毒、甘薯曲叶病毒和甘薯褪绿矮化病毒5种病毒,其中23份为复合侵染,存在11种侵染类型。遗传分析显示山东省甘薯羽状花叶病毒主要为EA、O和C株系,甘薯潜隐病毒与周边省份分离物相近,甘薯G病毒与中国海南和美国分离物相近,甘薯曲叶病毒分属3个株系。表明山东地区甘薯病毒种类繁多,侵染模式复杂,病毒遗传结构具有多样性。  相似文献   

3.
Sweet potato has been grown in Hungary for the last three decades, and its popularity is increasing among farmers and consumers. Its production is hampered by pests and diseases due to poor agricultural practices, such as the use of virus-infected propagation materials. We tested the presence of 15 viruses by PCR and quantitative PCR in 110 sweet potato plants collected from seven regions in Hungary. Seven viruses in single or multiple infections associated with a wide range of foliar symptoms were detected: sweet potato chlorotic stunt virus (SPCSV), sweet potato virus G (SPVG), sweet potato virus C (SPVC), sweet potato feathery mottle virus (SPFMV), sweet potato virus 2 (SPV2), sweet potato leaf curl virus (SPLCV), and sweet potato pakakuy virus (SPPV). This is the first report on the occurrence of the begomovirus SPLCV in sweet potatoes in Hungary. The infectivity and identity of these viruses were confirmed through bioassays (grafting to Ipomoea setosa) and sequencing of the PCR-amplified sections of their genomes, respectively. Due to the necessity for virus-free sweet potato propagation material in Hungary, virus elimination was carried out successfully in five out of six genotypes important for Hungarian farmers using heat treatment and meristem tip culture. All five viruses detected in the plants before heat treatment were removed except SPPV, which persists after heat treatment. Production and strict regulation of virus-free sweet potato propagation materials are recommended to avoid exacerbating the virus situation and protect Hungarian farmers from further losses.  相似文献   

4.
Abstract

The distribution of two sweet potato potyviruses, FMV and SPLV, was assessed in three plants infected with both viruses and in one plant infected with FMV only. All leaves, the top and basal sections of the main stem, and branch sections were tested by ELISA. Both symptomless leaves and leaves showing symptoms including purple rings, chlorotic spots, mottle or discoloration were found to contain the viruses. However, neither could be detected in every leaf or stem piece. SPLV was found in a lower proportion of leaf and stem samples than FMV. This indicates that the two viruses are either very unevenly distributed within sweet potato plants or that the virus concentration in some parts is below the detectable level. Testing of each leaf is recommended for reliable virus indexing of small, meristem‐derived sweet potato plantlets, if the ELISA method is used. Additional indexing of all ELISA‐negative materials by grafting to susceptible indicator plants is nevertheless still necessary.  相似文献   

5.
Sweet potato begomoviruses diverge basally from all other begomoviruses and have been named sweepoviruses. In 2009, a sweepovirus was detected for the first time in sweet potato crops in Uganda by using the indicator plant Ipomoea setosa and generic primers in a polymerase chain reaction (PCR). An isolate was cloned and sequenced, the first fully sequenced genome of a sweepovirus from mainland Africa. At the nucleotide level, this isolate differed from other sweepoviruses by at least 13%, discriminating the Ugandan isolate as a new species which has been tentatively named Sweet potato leaf curl Uganda virus (SPLCUV). In infected sweet potato plants, SPLCUV showed an uneven distribution; it was detected more often in samples from the midrib and lamina of middle and lower leaves, and reversion to healthy tissue occurred, especially in shoots of cv. New Kawogo. This appears to be the first report of resistance to a sweepovirus in sweet potato. While it was only detected at relatively low efficiency by PCR, use of I. setosa plants as an indicator of sweepovirus infection in sweet potato plants was as efficient as using real‐time quantitative PCR (qPCR). Storage of dry leaves for 84 days and dried DNA extracts for 21 days did not affect the ability of PCR and qPCR to detect it. Sweepovirus(es) was detected frequently using generic primers in cultivars Ejumula, New Kawogo and 318L in eastern and central Uganda.  相似文献   

6.
7.
为明确引起国家种质广州甘薯资源圃中病毒病的病毒种类及优势种,为甘薯种质安全保存提供支持,2017年从甘薯资源圃中未脱毒更新的盆栽苗和大田苗中采集155份具有不同病毒病症状的甘薯资源样品,利用PCR和RT-PCR检测技术对这些样品进行了17种病毒的分子检测.155份样品均有病毒检出,包括甘薯羽状斑驳病毒Sweet pot...  相似文献   

8.
Sweet pepper (Capsicum annuum) is a popular crop worldwide and an asymptomatic host of the begomovirus (Geminiviridae) Tomato yellow leaf curl virus (TYLCV). A previous study showed that TYLCV could be transmitted by the seeds of tomato plants, but this phenomenon has not been confirmed in other plants. In 2015, four different cultivars of sweet pepper (‘Super Yellow,’ ‘Super Red,’ ‘Sunnyez’ and ‘Cupra’) known to be susceptible to TYLCV were agro-inoculated with a TYLCV infectious clone. Three months after inoculation, the leaves of the ‘Super Yellow’ cultivar showed 80% (8/10) susceptibility and the other three sweet pepper cultivars showed 30 to 50% susceptibilities. All of the ‘Super Yellow’ seed bunches (five seeds per bunch) from plants whose leaves were confirmed to be TYLCV-infected were also TYLCV-infected (8/8). The seeds of other cultivars showed 20 to 40% susceptibilities. Virus transmission rates were also verified with 10 bunches of seedlings for each cultivar (five seedlings per pool). Eight bunches of ‘Super Yellow’ seedlings (8/10) were confirmed to be TYLCV-infected and one to three bunches of each of the other cultivar seedlings were also infected. Viral replication in TYLCV-infected seeds and seedlings was confirmed via strand-specific amplification using virion-sense- and complementary-sense-specific primer sets. This is the first report of TYLCV seed transmission in sweet pepper plants and among non-tomato plants. Because sweet pepper is an asymptomatic host of TYLCV, seeds infected with TYLCV could act as a silent invader of tomatoes and other crops.  相似文献   

9.
在吉林省7个主要甘薯种植区共采集85份甘薯叶片样品,利用小RNA深度测序技术对混合样品进行检测,经RT-PCR和测序验证,鉴定出样品中存在10种病毒,包括6种RNA病毒和4种DNA病毒。分别是马铃薯Y病毒科马铃薯Y病毒属的甘薯羽状斑驳病毒Sweet potato feathery mottle virus (SPFMV)、甘薯潜隐病毒Sweet potato latent virus (SPLV)、甘薯G病毒Sweet potato virus G (SPVG)、甘薯C病毒Sweet potato virus C (SPVC)、甘薯2号病毒Sweet potato virus 2 (SPV2);长线形病毒科毛形病毒属的甘薯褪绿矮化病毒Sweet potato chlorotic stunt virus (SPCSV);双生病毒科菜豆金色花叶病毒属的甘薯曲叶病毒Sweet potato leaf curl virus(SPLCV);玉米线条病毒属的甘薯无症状1号病毒Sweet potato symptomless virus 1 (SPSMV1);花椰菜花叶病毒科杆状DNA病毒属的甘薯杆状DNA病毒B Sweet potato badnavirus B (SPBV-B)和甘薯隐症病毒Sweet potato pakakuy virus (SPPV)。  相似文献   

10.
11.
中国甘薯病毒种类的血清学和分子检测   总被引:7,自引:1,他引:6  
 2009~2010年,从我国18个省(市)采集了176份表现病毒病症状的甘薯样品。利用血清学、PCR和核苷酸序列测定的方法,对上述样品中的病毒种类进行了鉴定。血清学检测结果表明,供试样品中甘薯羽状斑驳病毒(SPFMV)的阳性率最高,达56.3%,其次为甘薯G病毒(SPVG)和甘薯类花椰菜花叶病毒(SPCaLV),阳性率分别为34.1%和33.5%。PCR和核苷酸序列测定结果表明,我国甘薯上至少存在SPFMV、SPVG、甘薯潜隐病毒(SPLV)、甘薯褪绿斑病毒(SPCFV)、甘薯褪绿矮化病毒(SPCSV)、黄瓜花叶病毒(CMV)、甘薯脉花叶病毒(SPVMV)和甘薯卷叶病毒(SPLCV)8种病毒。此外,供试样品中没有检测出甘薯轻斑驳病毒(SPMMV),是否存在甘薯轻斑点病毒(SPMSV)、SPCaLV和C 6病毒尚不能确定。  相似文献   

12.
The wide natural incidence of Cherry leaf roll virus (CLRV) in deciduous forest trees and nurseries in northern Europe is believed to have occurred, apart from occasional mechanical spread and transmission through grafting, mainly by seed transmission. The mode of the vertical transmission and its role in the epidemiology of the virus has not been investigated, basically due to the inconvenient host-pathogen combinations studied to date. With the aim of obtaining an appropriate system for identification of viral genes and products participating in infection processes and seed transmission of CLRV, we performed infection and seed transmissibility tests with CLRV in Arabidopsis thaliana plants. Two phylogenetically and serologically different CLRV isolates were tested. Both of them were found able to infect A. thaliana plants, exhibited clear symptoms of the infection and spread systemically in the plants. Infection of the seeds and of a remarkable number of seedlings generated from infected seeds was possible for two consecutive generations. These results, for first time, report seed transmission of CLRV in the model plant A. thaliana and allow the assumption to be made of embryo invasion during seed transmission. Furthermore, first indications are given that genetically diverse CLRV isolates exhibit different abilities for vertical transmission in A. thaliana. The CLRV-A. thaliana model system is suitable for investigating viral invasion of developing plant organs and meristematic tissue, a prerequisite for successful virus dissemination via vertical transmission through seed.  相似文献   

13.
Studies were conducted to examine the characteristics of infestation of vines of sweet potato plants by the sweet potato weevil, Cylas formicarius (F.). The use of terminal tender vine cuttings, taken even from heavily weevil‐infested sweet potato, to grow a new crop and planting such a crop in plots surrounded by barriers to reduce weevil migration from the outside to the newly planted area, produced a practically weevil‐free crop. On the contrary, crop planted to old vine cuttings in an open field was severely damaged by the weevil. Consequently, crop planted using tender vine cuttings produced significantly more root yield than the one planted to old vine cuttings, irrespective of whether the planting was done in an open field or in an insect‐protected field. Sweet potato weevil infestation of 1‐ to 8‐week‐old plants increased significantly with plant age. The insect preferred sweet potato roots over sweet potato vines when both plant parts were available for infestation. Dipping the vine cuttings for 30 min in carbofuran solution prior to planting protected the newly planted sweet potato crop for up to 6 weeks after planting.  相似文献   

14.
Tomato leaf curl New Delhi virus (ToLCNDV; family Geminiviridae, genus Begomovirus) is an emerging virus in horticulture crops in Asia, and has recently been introduced in Spain, Tunisia and Italy. No betasatellite DNA was detected in infected tomato and zucchini squash samples from Spain, and agroinoculated viral DNA‐A and DNA‐B were sufficient to reproduce symptoms in plants of both crop species. Infected tomato and zucchini squash plants also served as inoculum sources for efficient transmission either mechanically or using Bemisia tabaci whiteflies. Cucumber, melon, watermelon, zucchini squash, tomato, eggplant and pepper, but not common bean, were readily infected using viruliferous whiteflies and expressed symptoms 8–15 days post‐inoculation. New full‐length sequences from zucchini squash and tomato indicated a high genetic homogeneity (>99% sequence identity) in the ToLCNDV populations in Spain, pointing to a single recent introduction event.  相似文献   

15.
Wheat blast caused by Magnaporthe oryzae pathotype Triticum (MoT), initially restricted to South America, is a global threat for wheat after spreading to Asia in 2016 by the introduction of contaminated seeds, raising the question about transmission of the pathogen from seeds to seedlings, a process so far not well understood. We therefore studied the relationship between seed infection and disease symptoms on seedlings and adult plants. To accomplish this objective, we inoculated spikes of wheat cv. Apogee with a transgenic isolate (MoT-DsRed, with the addition of being resistant to hygromycin). We identified MoT-DsRed in experiments using hygromycin resistance for selection or by observation of DsRed fluorescence. The seeds from infected plants looked either apparently healthy or shrivelled. To evaluate the transmission, two experimental designs were chosen (blotter test and greenhouse) and MoT-DsRed was recovered from both. This revealed that MoT is able to colonize wheat seedlings from infected seeds under the ground. The favourable conditions of temperature and humidity allowed a high recovery rate of MoT from wheat shoots when grown in artificial media. Around 42 days after germination of infected seeds, MoT-DsRed could not be reisolated, indicating that fungal progression, at this time point, did not proceed systemically/endophytically. We hypothesize that spike infection might occur via spore dispersal from infected leaves rather than within the plant. Because MoT-DsRed was not only successfully reisolated from seed coats and germinating seeds with symptoms, but also from apparently healthy seeds, urgent attention is needed to minimize the risks of inadvertent dispersal of inoculum.  相似文献   

16.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

17.
甘薯病毒病害(Sweet potato virus disease,SPVD)是由毛形病毒属(Crinivirus)的甘薯褪绿矮化病毒(Sweet potato chlorotic stunt virus,SPCSV)和马铃薯Y病毒属(Potyvirus)的甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)协生共侵染甘薯引起的病毒病害[1].  相似文献   

18.
The influence of co‐infection on concentration and accumulation of genetically different isolates of Potato virus Y (PVY) in potato and tobacco plants and the efficiency of transmission by Myzus persicae of PVY isolates from doubly versus singly infected plants were evaluated. The vector ability to simultaneously transmit two virus isolates was examined. Eight PVY isolates represented three strain groups: PVYO (pathotype and serotype O), PVYNW (pathotype N and serotype O), and PVYNTN (pathotype and serotype N). Different diagnostic methods, including DAS‐ELISA, multiplex RT‐PCR, aphid transmission tests and bioassays, were applied to detect the presence of PVY isolates in source and assay plants. Significant reductions in concentrations of certain PVY isolates during co‐infection with other isolates were found both in potato and tobacco plants. The observed effects were both isolate‐ and host‐dependent in form. The highest rates of virus transmission by single aphids were recorded with PVYNTN isolates, and the lowest ones with PVYO isolates. Individual aphids of M. persicae were able to simultaneously transmit two PVY isolates. The frequency of transmission was generally low, but it reached as high as 20% for one of the isolate combinations. The findings presented in the work provide proof for antagonistic within‐plant interactions between isolates of PVY, with some implications of these interactions for virus transmission by aphid vectors. Consequently, this research contributes to a better understanding of the epidemiology of the disease caused by PVY.  相似文献   

19.
我国甘薯脱毒种薯种苗繁育存在的问题及建议   总被引:2,自引:0,他引:2  
张振臣 《植物保护》2020,46(6):10-13
病毒病是甘薯的重要病害, 种植脱毒健康种苗是防治病毒病?提高甘薯产量最有效的方法?近年来, 我国甘薯病毒及其传播介体的发生呈现出新的特点, 传统的脱毒种薯种苗繁育体系不能满足当前甘薯生产的需要?本文综述了当前我国甘薯病毒的种类及危害现状, 分析了我国甘薯脱毒种薯种苗繁育中存在的问题, 对规范和完善我国甘薯脱毒种薯种苗繁育体系提出了建议?  相似文献   

20.
Sweet potato leaf curl virus (SPLCV) is a possible member of the genus Begomovirus; however, the presence of typical geminate particles in sap has not been confirmed. We attempted to observe SPLCV virions by partially purifying the virus using an enzyme-assisted procedure. The observed virions in the partially purified preparations were typical geminate particles with a size of ca. 18×30nm. This virus preparation was subjected to western blot analysis using antisera against Bean golden mosaic virus (BGMV) and Mungbean yellow mosaic virus (MYMV). SPLCV reacted with both antisera. Specific bands appeared to be slightly larger than the 30-kDa marker protein and were considered to be SPLCV coat protein. This western blot analysis revealed for the first time a serelogical relationship between SPLCV and the two well-characterized begomoviruses. Received 28 June 1999/ Accepted in revised form 17 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号