首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The widely used plastic film containing di(2-ethylhexyl) phthalate (DEHP) in agriculture has caused serious soil pollution and poses risks to human health through the food chain. An effective DEHP degradation bacteria, Microbacterium sp. J-1, was newly isolated from landfill soil. Response surface methodology was successfully employed for optimization resulting in 96% degradation of DEHP (200 mg L?1) within 5 days. This strain degraded DEHP by hydrolysis of the ester bond and hydroxylation of the aromatic ring to form 2-ethyl hexanol, mono-(2-ethylhexyl) phthalate, phthalate acid, and protocatechuic acid, and subsequently transformed these compounds with a maximum specific degradation rate (q max), half-saturation constant (K s ), and inhibition constant (K i ) of 1.46 day?1, 180.2 mg L?1, and 332.8 mg L?1, respectively. Bioaugmentation of DEHP-contaminated soils with the strain J-1 greatly enhanced the DEHP dissipation rate (~88%). Moreover, this strain could efficiently colonize the rhizosphere soil of inoculated vegetables and further enhanced DEHP degradation (~97%), leading to a significant decrease (>70%) in DEHP accumulation in shoots and roots of the inoculated vegetables compared to uninoculated vegetables. The results highlighted the roles of the inoculated exogenous bacteria in simultaneously bioremediating contaminated soils and reducing bioaccumulation of DEHP in the edible part of the vegetable for food safety.  相似文献   

2.
The present study was carried out in order to investigate the removal of soluble Mn2+ from an aqueous solution using Bacillus cereus. A manganese aqueous solution at 50 mg L?1 was treated, and the product was less than 1 mg L?1 of residual concentration, which complied with environmental regulations. Before the optimization, B. cereus was able to remove Mn2+ ions from an aqueous solution; however, the residual content was around 2.5 mg L?1. Screening experiments aiming at defining the effects of the growth medium composition indicated that both casamino acid-peptone and yeast extract contributed to manganese removal. These experiments also showed the interaction between these two components of the culture media, nevertheless the use of glucose did not prove significant. Considering these observations, the Doehlert design was used to generate a response surface. The model was significant with the p value lower than 0.05 and the lack-of-fit not significant (p > 0.05). The optimized composition of the growth medium was defined as 0.5 g L?1 of casamino acid-peptone and 0.25 g L?1 of yeast extract, whereas glucose could be removed from the original growth medium. When the optimized condition of the growth medium was used, the time required for manganese removal was reduced from 21 to 8 days. After optimization, B. cereus was capable of producing high manganese removal, reducing the residual concentration to levels below 1.0 mg L?1.  相似文献   

3.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

4.
The impact of nanoparticles (NPs) in zooplankton is poorly studied, particularly when organisms are exposed through diet. Food, constituted mainly by unicellular algae, can act as an important route of contamination for zooplankton. Since unicellular algae have a high surface area in relation to their volume, NPs can interact with their cell membranes and walls, as well as with exopolysaccharides secreted by them. In the present research, we investigated both the acute effects of waterborne titanium dioxide nanoparticles (TiO2 NPs), and its chronic effects via dietary exposure on the Neotropical freshwater zooplankton Ceriodaphnia silvestrii Daday, 1902 (Crustacea: Cladocera). The observed acute effects served as support for chronic tests, in which we investigated the effects of TiO2 NPs on survival and life history parameters (body length, numbers of eggs, and neonates produced) of cladoceran adult females, using the freshwater cosmopolitan chlorophycean Raphidocelis subcapitata as source of contamination of TiO2 NPs for zooplankton. R. subcapitata cells were exposed to concentrations of 0, 0.01, 1, and 10 mg L?1 of TiO2 NPs for 96 h, and then provided as food for females of C. silvestrii until the third brood was released. Significant toxic effects were observed in body length and total number of neonates and eggs produced by females of C. silvestrii at concentrations of 1 and 10 mg L?1 of TiO2 NPs. Survival was the most sensitive parameter when exposure was given via food. From the concentration of 0.01 mg L?1 of TiO2 NPs, there was a decrease in the survival of C. silvestrii females. The quantification of TiO2 NPs in algae evidenced that they have retained NPs in their cells, being, therefore, an important route of exposure and toxicity of TiO2 NPs to the studied microcrustacean.  相似文献   

5.
The effects of phosphate processing wastewater (PPWW) on heavy metal accumulation in a Mediterranean soil (Tunisia, North Africa) were investigated. Moreover, the residual toxicities of PPWW-irrigated soils extracts were assessed. Results showed that heavy metal accumulation was significantly higher in PPWW-irrigated soil extracts than in control soil. The heavy metal accumulation increased over time in treated soil samples and their average values followed the following order: Iron (Fe 252.72 mg l?1) > Zinc (Zn 152.95 mg l?1) > Lead (Pb 128.35 mg l?1) > Copper (Cu 116.82 mg l?1) > Cadmium (Cd 58.03 mg l?1). The residual microtoxicity and phytotoxicity of the various treated soil samples extracts were evaluated by monitoring the bioluminescence inhibition (BI %) of Vibrio ficheri and the measurement of the germination indexes (GI %) of Lepidium sativum and Medicago sativa seeds. The results showed an important increase of residual toxicities of PPWW-treated soil extracts over time.  相似文献   

6.
Soil components from different environments (forest (OF), semiarid (SZ), and sand (AS)) were separated from fulvic and humic substances, characterized by DRX, EDS(SEM), and zero-charge points were determined. The sorption of U(VI) by these materials was determined considering contact time, concentration of U(VI), pH, ionic strength, and presence of sodium chloride and humic acids. The time to reach the kinetic sorption equilibrium was ca. 1 min for the components of the SZ and AS soils, whereas those from OF required longer times. The zero-charge points of the materials indicate that in the experimental conditions, the surfaces of the materials are positively charged, as are uranyl ions. The sorption kinetic data were well fitted to the pseudo-second-order model, which indicates chemical sorption. The maximum sorption capacities for U(VI) obtained from data fitted to the Langmuir model of OF and SZ were 49 and 19.8 mg g?1 respectively. Sorption isotherm data for AS were best fitted to the Freundlich model (qe?=?5.4 mg g?1). The maximum values of distribution coefficients (Kd) were 23?±?7 L kg?1, 545?±?64 L kg?1, and 1178?±?229 L kg?1 for AS, SZ, and OF, respectively; these values may depend on pH, contact time, initial concentration of U(VI), and the composition of the materials. Sodium chloride in the aqueous solutions affects U(VI) sorption by the materials SZ and AS. The effect of humic acids depends on pH, only in acid media soluble humate complexes may be formed.  相似文献   

7.
The removal efficiency and tolerance of Typha domingensis to Cr(VI) in treatments with and without organic matter (OM) addition were evaluated in microcosm-scale wetlands. Studied Cr(VI) concentrations were 15 mg L?1, 30 mg L?1, and 100 mg L?1, in treatments with and without OM addition, arranged in triplicate. Controls (without neither metal nor OM addition—without metal with OM addition) were disposed. Cr(VI) was removed efficiently from water in all treatments. OM addition enhanced significantly Cr(VI) and total Cr removals from water. In the treatments with OM addition, significantly higher Cr concentrations were found in sediment than the treatments without OM addition. Plants of the treatments without OM addition showed significantly higher Cr concentrations in tissues but lower biomass increase than the treatments with OM addition. The highest Cr concentrations in tissues were observed in submerged parts of leaves, followed by roots. According to SEM analysis, in the 100 mg L?1 treatments, the highest Cr accumulation was observed in the epidermis of old leaves. Although Cr(VI) produced changes in root morphology, the OM addition favored the plant growth. In T. domingensis, root morphological plasticity is an important mechanism to improve metal tolerance and Cr uptake in wetland systems minimizing the environmental impact.  相似文献   

8.
In vitro techniques may provide a suitable tool for effective propagation and conservation of plant species representing various ecological niches. The elaboration of such protocols is also prerequisite for selection of heavy-metal-tolerant plant material that could be afterwards used for restoration or remediation of polluted sites. In this study, culture protocol for Gypsophila fastigiata propagation was developed. The highest multiplication coefficient, which reached 6.5, and the best growth parameters were obtained on modified MS medium supplemented with 1.0 mg L?1 2iP and 0.2 mg L?1 IAA. The obtained cultures were treated with different concentrations of lead nitrate (0.1, 0.5, and 1.0 mM Pb(NO3)2) or cadmium chloride (0.5, 2.5, and 5.0 μM CdCl2). The growth parameters, photosynthetic pigments, and phenolic compound content were examined in order to evaluate whether tested metal salts can have an adverse impact on studied culture. It was ascertained that Pb ions induced growth disturbances and contributed to shoot wither. On the contrary, the proliferative shoot cultures were established on media containing Cd ions and the multiplication coefficients and shoot length increased on all media enriched with CdCl2. Chlorophylls and carotenoid contents were negatively affected by application of 5.0 μM of cadmium; nevertheless, in shoots treated with 2.5 μM CdCl2, increased accumulation of photosynthetic pigments occurred and their amount was similar to untreated culture. Adaptation to Cd was associated with stimulation of phenolic compound synthesis. Hence, we have reported on unambiguous positive result of in vitro selection procedure to obtain vigorous shoot culture tolerant to cadmium.  相似文献   

9.
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L?1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L?1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71?±?0.696 mg dye g?1 cell h?1 for maximum rate (Vmax) and 112.35?±?0.34 mg L?1 for the Michaelis constant (Km). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.  相似文献   

10.
It is now acknowledged that aromatic hydrocarbons present in contaminated soils occur in mixtures. The effect of single, binary and quinary mixtures of phenanthrene and selected nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) were investigated on the survival, growth and behavioural index of earthworms (Eisenia fetida) over a 21-day incubation in soil. The results showed that the LC50 values ranged from (not detected) ND–329.3 mg kg?1 (single mixture), ND–219.8 mg kg?1 (binary mixtures) to 148.4 mg kg?1 (quinary mixture), while the EC50 values (based on weight loss) ranged from 13.3–148.4 mg kg?1 (single mixture), 63.8–148.4 mg kg?1 (binary mixture) to 24.2 mg kg?1 (quinary mixture). Greater impacts were recorded where N-PAHs are present with phenanthrene. Further, behavioural index of E. fetida was affected after 24-h exposure to N-PAH-amended soils. Among the N-PAHs however, benzo[h]quinoline recorded the greatest impact on the survival, growth and behavioural index of E. fetida in soil. Findings from this study showed that three ring-N-PAHs are more toxic than phenanthrene as expected from their physico-chemical properties. The binary and quinary mixtures of phenanthrene and N-PAHs in soil intensified toxicity, suggesting that PAHs-N-PAHs mixtures represent greater risk to soil biota.  相似文献   

11.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

12.

Purpose

The application of roxarsone (ROX), an arsenic-containing compound, as a feed additive in the animal production industry results in elevated soil levels of ROX and its metabolites, namely, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), and arsenite (As(III)). This study was conducted to study the extraction and speciation analysis of ROX-related arsenicals in soils with different physicochemical properties and the possible effects of soil properties on the extraction of ROX and its metabolites.

Materials and methods

Analytical method based on high-performance liquid chromatography (HPLC)-inductively coupled plasma–mass spectrometry (ICP-MS) was employed to determine the concentrations of As(III), DMA, MMA, As(V), and ROX extracted by different extraction solvents from different soils spiked by arsenicals. Validity of the developed method was assessed by the recovery efficiencies of arsenic species in soil-dissolved matter solutions containing 20 μg As?·?L?1 of each arsenic species. Effects of soil properties on the extraction of ROX and its metabolites were analyzed by Pearson’s correlation.

Results and discussion

Arsenic species were separated using gradient elution of water and 20 mmol?·?L?1 (NH4)2HPO4 + 20 mmol?·?L?1 NH4NO3 + 5 % methanol (v/v) within 27 min. The linear ranges of all arsenicals were 0–200 μg As?·?L?1 with R 2?>?0.9996. The developed method provided lower limits of detection for As(III), DMA, MMA, As(V), and ROX (0.80, 0.58, 0.35, 0.24, and 1.52 μg As?·?L?1, respectively) and excellent recoveries (92.52–102.2 %) for all five species. Arsenic speciation was not altered by 0.1 mol?·?L?1 NaH2PO4 + 0.1 mol?·?L?1 H3PO4 (9:1, v/v), which offered better average extraction efficiencies for As(III), As(V), DMA, MMA, and ROX (32.49, 92.50, 78.24, 77.64, and 84.54 %, respectively). Extraction performance of arsenicals was influenced by soil properties, including pH, cation exchange capacity (CEC), total Fe, and amorphous Fe.

Conclusions

ROX and its metabolites from soils could be satisfactorily separated by the developed method for the studied arsenicals. To extract arsenic species from soils, 0.1 mol?·?L?1 NaH2PO4 + 0.1 mol?·?L?1 H3PO4 (9:1, v/v) was recommended. Extraction efficiencies of arsenicals were influenced more by solvent composition than soil physicochemical properties. The present study provides a valuable tool and useful information for determining the concentrations of ROX and its metabolites in contaminated soils.
  相似文献   

13.
In consideration of the hazards associated with the presence of the textile azo-dye and their biotransformation products in the environment, the goal of this work was to study bioremediation process by the yeast strain Pichia kudriavzevii CR-Y103 related to the ability to degrade and detoxify the sulfonated Reactive Orange 16 azo-dye. In experimental conditions, the optimal inoculum/dye concentration ratio required for complete decolorization (100%) of culture medium and biomass within 24 h has been 1 g L?1 yeast cell (dry weight)/50 mg L?1 Reactive Orange 16. In the presence of 400 mg L?1 of Reactive Orange 16 (RO16), 95% of the dye was removed after 72 h of incubation. Also, the yeast strain could decolorize other eight textile dyes (56.48–99.98% decolorization within 24 h). NADH-DCIP reductase and azo reductase activities were significantly increased (ca. 5.4 times and ca. 37 times, respectively) during the decolorization process. UV-VIS spectra, high-performance liquid chromatography (HPLC), and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of new biotransformation products in extracted metabolites, highlighting the partial biodegradation of the dye by the new yeast isolate. The phytotoxicity evaluation strongly supported the decreased toxicity of biodegraded products as minor inhibition on germination (%), root and shoots elongation of T. pratense L. and T. aestivum L. seedlings. Increasing of mitotic index value and decreasing the frequency of chromosomal aberrations in tested plant meristem cells treated with biodegraded products, compared with RO16 treatment (500 ppm), confirmed their slightly toxic nature. A cell viability assay also confirmed the reduced toxicity of biodegraded products on healthy monkey kidney cells (Vero cells).  相似文献   

14.
The concentrations of mercury, lead, cadmium, and arsenic were evaluated in 96 samples, 12 by each one of the following eight fish species: snook (Centropomus undecimalis), crevalle jack (Caranx hippos), Serra Spanish mackerel (Scomberomorus brasiliensis), southern red snapper (Lutjanus purpureus), blue runner (Caranx crysos), Atlantic tarpon (Megalops atlanticus), ladyfish (Elops saurus), and Atlantic goliath grouper (Epinephelus itajara), which were collected during 1 year in the Atrato River Delta in the Gulf of Urabá, Colombian Caribbean. Three fish were caught from each of the following sites the community usually uses to catch them (known as fishing grounds): Bahía Candelaria, Bahía Marirrío, Bocas del Roto, and Bocas del Atrato. The quantification of metals was performed by microwave-induced plasma-optical emission spectrometry. The Pb concentration fluctuated from 0.672 to 3.110 mg kg?1, surpassing the maximum permissible limit (MPL?=?0.3 mg kg?1) for human consumption for all species. The Hg concentration ranged between < Limit of detection and 6.303 mg kg?1, and in the crevalle jack and Atlantic tarpon, concentrations exceeded the MPL (0.5 mg kg?1). The levels of Cd and As were not significant in the studied species and did not exceed the MPL (0.05 mg kg?1).  相似文献   

15.

Purpose

The present study was carried out in Roro region, Chaibasa, Jharkhand, India, to assess the impact of chromite–asbestos mine waste (CMW) on a nearby agroecosystem. The role of metal-accumulating grass–legume association in facilitating phytoremediation was investigated.

Materials and methods

Soil and plant samples were collected from (i) chromite–asbestos mine waste (CMW) with Cynodon dactylon, Sorghastrum nutans, and Acacia concinna; (ii) contaminated agricultural soil-1 (CAS1) from a foothill with Cajanus cajan; (iii) contaminated agricultural soil-2 (CAS2) distantly located from the hill, cultivated with Oryza sativa and Zea mays; and (iv) unpolluted control soil (CS). Total metal concentrations were quantified in both soils and plants by digesting the samples using HNO3, HF, HClO4 (5:1:1; v/v/v), and HNO3 and HClO4 (5:1; v/v), respectively, and analyzed under flame atomic absorption spectrophotometry. Metal grouping and site grouping cluster analysis was executed to group the metals and sampling sites. Translocation factor (TF) and bioconcentration factor (BCF) were calculated to determine the phytoremediation efficiency of grasses and legumes.

Results and discussion

Results indicate that total metal concentrations in the CMW were in the order of Cr?>?Ni?>?Mn?>?Cu?>?Pb?>?Co?>?Zn?>?Cd. High concentrations of Cr (1983 mg kg?1) and Ni (1293 mg kg?1) with a very strong contamination factor were found in the CAS, which exceeds the soil threshold limits. Further, metal and site grouping cluster analysis also revealed that Cr and Ni were closely linked with each other and the CMW was the main source of contamination. Among all the metals, Cr and Ni were mainly accumulated in grasses (C. dactylon and S. nutans) and legumes (A. concinna and C. cajan) as compared to cereals (Z. mays and O. sativa). The TF of Cr was >1 for grasses. Except for Zn, the BCF for all the metals were <1 in roots and shoots of all the plants and cereals.

Conclusions

The present study revealed that abandoned CMW is the source of contamination for agriculture lands. Phytoremediation relies on suitable plants with metal-scavenging properties. Grass–legume cover (C. dactylon, S. nutans, A. concinna, and C. cajan) has the ability to accumulate metals and act as a potential barrier for metal transport, which facilitate the phytoremediation of the CMW. Possibilities for enhancing the barrier function of the grass–legume cover need to be explored with other low-cost agronomic amendments and the role of rhizospheric organisms.
  相似文献   

16.
Assessment of surface water quality in the Mississippi Delta is essential to quantify the eutrophication of the Gulf of Mexico. This study estimated the characteristics and variations of surface water quality at three study sites in the Big Sunflower River Watershed (BSRW) within the Mississippi Delta using Kruskal-Wallis, Dunn, Mann-Kendall, and Pettitt tests. In general, contents of some water quality constituents such as nitrate-nitrogen (NO3???N) and total phosphorus (TP) in the BSRW varied from site to site each year, whereas variations of other constituents such as pH and dissolved oxygen (DO) each year were basically not significant. The highest median concentrations were found in spring for NO3???N and total nitrogen (TN); in summer for specific conductance (SC), Na, and Cl; and in winter for DO. Mann-Kendall trend analysis revealed that there was an increasing annual trend at Leland but a decreasing annual trend at Merigold for NO3???concentrations even though such changes were very small, whereas there was no annual trend for TP at any of the three study sites. Pettitt’s test further identified that the NO3???N concentrations had an abrupt increase in February 2009 at the median value of 0.44 mg L?1 in Leland and an abrupt decrease in June 2012 at the median value of 3.65 mg L?1 in Merigold. A very good linear correlation existed between total dissolved solid (TDS) and magnesium (Mg) in the BSRW, which could be used to estimate TDS from Mg concentrations for this watershed when the data for TDS are absent.  相似文献   

17.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

18.
The establishment of a complementary grass cover on vineyard soils can promote sustainability of the affected environment. In this work, we used an acid vineyard soil with total Cu concentration 188 mg kg?1 to study the influence of pine bark amendment on Lolium perenne growth and Cu uptake. The results indicate that the pine bark amendment did not cause a significant increase in the mass of the shoots of Lolium perenne, but favored the root biomass: 0.034 g for control and 0.061 g for soil samples amended with 48 g kg?1 of pine bark. Moreover, the pine bark amendment decreased Cu concentration in both, shoots (50 mg kg?1 for control soil and 29 mg kg?1 for soil amended with 48 g kg?1 pine bark) and roots (250 mg kg?1 for control soil and 64 mg kg?1 for soil amended with 48 g kg?1 pine bark). The main factor responsible for these results was a significant decrease of the most mobile fractions of Cu in the soil. Those fractions were extracted using ammonium acetate, ammonium chloride, sodium salt of ethylene-diamine-tetraacetic acid (EDTA-Na), and diethylene-triamine-pentaacetic acid (DTPA).  相似文献   

19.
Poly- and perfluorinated alkyl substances (PFASs) are groups of persistent toxic substances that have been commonly detected in wastewater treatment plants (WWTPs). In some cases, the activated sludge (AS) in WWTPs will encounter special wastewaters containing PFASs up to tens of milligram per liter (mg L?1). However, under this condition, the potential impacts of PFASs on AS process remain unclear. In the present research, a lab-scale sequencing batch reactor was continuously exposed to perfluorooctanoic acid (PFOA), used as a representation for PFASs, at 20 mg L?1 to mimic the extreme condition. The objective is to explore the impact of PFOA on AS process in terms of its wastewater treatment performance and evolution of microbial communities. The results indicate that PFOA restrained the microbial growth and affected the dissolved organic carbon removal. These negative impacts could be recovered after long-term adaptation. Besides, 20 mg L?1 PFOA shows limited inhibition on nitrification and denitrification, suggesting a safe exposure level of PFOA for nitrogen removal. For microbial evolution, PFOA induced changes of communities during long-term exposure. The high abundance of Bacteroidetes, Proteobacteria, and Acidobacteria maintained over time reveals their tolerance towards PFOA. The occurrences of PFOA-resistant species are also observed. The present research provides new insight into the possible impacts of typical PFAS at high concentrations on AS process.  相似文献   

20.
The herbicides 2,4-diclorophenoxiacetic and 4-chloro-2-methylphenoxyacetic acids (2,4-D and MCPA) are widely used in agricultural practices worldwide. Not only are these practices responsible of surface waters contamination, but also agrochemical industries through the discharge of their liquid effluents. In this investigation, the ability of a 2,4-D degrading Delftia sp. strain to degrade the related compound MCPA and a mixture of both herbicides was assessed in batch reactors. The strain was also employed to remove and detoxify both herbicides from a synthetic effluent in a continuous reactor. Batch experiments were conducted in a 2-L aerobic microfermentor, at 28 °C. Continuous experiments were carried out in an aerobic downflow fixed-bed reactor. Bacterial growth was evaluated by the plate count method. Degradation of the compounds was evaluated by UV spectrophotometry, gas chromatography (GC), and chemical oxygen demand (COD). Toxicity was assessed before and after the continuous process by using Lactuca sativa seeds as test organisms. Delftia sp. was able to degrade 100 mg L?1 of MCPA in 52 h. When the biodegradation assay was carried out with a mixture of 100 mg L?1 of each herbicide, the process was accomplished in 56 h. In the continuous reactor, the strain showed high efficiency in the simultaneous removal of 100 mg L?1 of each herbicide. Removals of 99.7, 99.5, and 95.0% were achieved for 2,4-D, MCPA, and COD, respectively. Samples from the influent of the continuous reactor showed high toxicity levels for Lactuca sativa seeds, while toxicity was not detected after the continuous process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号