首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In consideration of the hazards associated with the presence of the textile azo-dye and their biotransformation products in the environment, the goal of this work was to study bioremediation process by the yeast strain Pichia kudriavzevii CR-Y103 related to the ability to degrade and detoxify the sulfonated Reactive Orange 16 azo-dye. In experimental conditions, the optimal inoculum/dye concentration ratio required for complete decolorization (100%) of culture medium and biomass within 24 h has been 1 g L?1 yeast cell (dry weight)/50 mg L?1 Reactive Orange 16. In the presence of 400 mg L?1 of Reactive Orange 16 (RO16), 95% of the dye was removed after 72 h of incubation. Also, the yeast strain could decolorize other eight textile dyes (56.48–99.98% decolorization within 24 h). NADH-DCIP reductase and azo reductase activities were significantly increased (ca. 5.4 times and ca. 37 times, respectively) during the decolorization process. UV-VIS spectra, high-performance liquid chromatography (HPLC), and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of new biotransformation products in extracted metabolites, highlighting the partial biodegradation of the dye by the new yeast isolate. The phytotoxicity evaluation strongly supported the decreased toxicity of biodegraded products as minor inhibition on germination (%), root and shoots elongation of T. pratense L. and T. aestivum L. seedlings. Increasing of mitotic index value and decreasing the frequency of chromosomal aberrations in tested plant meristem cells treated with biodegraded products, compared with RO16 treatment (500 ppm), confirmed their slightly toxic nature. A cell viability assay also confirmed the reduced toxicity of biodegraded products on healthy monkey kidney cells (Vero cells).  相似文献   

2.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

3.
The widely used plastic film containing di(2-ethylhexyl) phthalate (DEHP) in agriculture has caused serious soil pollution and poses risks to human health through the food chain. An effective DEHP degradation bacteria, Microbacterium sp. J-1, was newly isolated from landfill soil. Response surface methodology was successfully employed for optimization resulting in 96% degradation of DEHP (200 mg L?1) within 5 days. This strain degraded DEHP by hydrolysis of the ester bond and hydroxylation of the aromatic ring to form 2-ethyl hexanol, mono-(2-ethylhexyl) phthalate, phthalate acid, and protocatechuic acid, and subsequently transformed these compounds with a maximum specific degradation rate (q max), half-saturation constant (K s ), and inhibition constant (K i ) of 1.46 day?1, 180.2 mg L?1, and 332.8 mg L?1, respectively. Bioaugmentation of DEHP-contaminated soils with the strain J-1 greatly enhanced the DEHP dissipation rate (~88%). Moreover, this strain could efficiently colonize the rhizosphere soil of inoculated vegetables and further enhanced DEHP degradation (~97%), leading to a significant decrease (>70%) in DEHP accumulation in shoots and roots of the inoculated vegetables compared to uninoculated vegetables. The results highlighted the roles of the inoculated exogenous bacteria in simultaneously bioremediating contaminated soils and reducing bioaccumulation of DEHP in the edible part of the vegetable for food safety.  相似文献   

4.

Purpose

The application of roxarsone (ROX), an arsenic-containing compound, as a feed additive in the animal production industry results in elevated soil levels of ROX and its metabolites, namely, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), and arsenite (As(III)). This study was conducted to study the extraction and speciation analysis of ROX-related arsenicals in soils with different physicochemical properties and the possible effects of soil properties on the extraction of ROX and its metabolites.

Materials and methods

Analytical method based on high-performance liquid chromatography (HPLC)-inductively coupled plasma–mass spectrometry (ICP-MS) was employed to determine the concentrations of As(III), DMA, MMA, As(V), and ROX extracted by different extraction solvents from different soils spiked by arsenicals. Validity of the developed method was assessed by the recovery efficiencies of arsenic species in soil-dissolved matter solutions containing 20 μg As?·?L?1 of each arsenic species. Effects of soil properties on the extraction of ROX and its metabolites were analyzed by Pearson’s correlation.

Results and discussion

Arsenic species were separated using gradient elution of water and 20 mmol?·?L?1 (NH4)2HPO4 + 20 mmol?·?L?1 NH4NO3 + 5 % methanol (v/v) within 27 min. The linear ranges of all arsenicals were 0–200 μg As?·?L?1 with R 2?>?0.9996. The developed method provided lower limits of detection for As(III), DMA, MMA, As(V), and ROX (0.80, 0.58, 0.35, 0.24, and 1.52 μg As?·?L?1, respectively) and excellent recoveries (92.52–102.2 %) for all five species. Arsenic speciation was not altered by 0.1 mol?·?L?1 NaH2PO4 + 0.1 mol?·?L?1 H3PO4 (9:1, v/v), which offered better average extraction efficiencies for As(III), As(V), DMA, MMA, and ROX (32.49, 92.50, 78.24, 77.64, and 84.54 %, respectively). Extraction performance of arsenicals was influenced by soil properties, including pH, cation exchange capacity (CEC), total Fe, and amorphous Fe.

Conclusions

ROX and its metabolites from soils could be satisfactorily separated by the developed method for the studied arsenicals. To extract arsenic species from soils, 0.1 mol?·?L?1 NaH2PO4 + 0.1 mol?·?L?1 H3PO4 (9:1, v/v) was recommended. Extraction efficiencies of arsenicals were influenced more by solvent composition than soil physicochemical properties. The present study provides a valuable tool and useful information for determining the concentrations of ROX and its metabolites in contaminated soils.
  相似文献   

5.
The present study was carried out in order to investigate the removal of soluble Mn2+ from an aqueous solution using Bacillus cereus. A manganese aqueous solution at 50 mg L?1 was treated, and the product was less than 1 mg L?1 of residual concentration, which complied with environmental regulations. Before the optimization, B. cereus was able to remove Mn2+ ions from an aqueous solution; however, the residual content was around 2.5 mg L?1. Screening experiments aiming at defining the effects of the growth medium composition indicated that both casamino acid-peptone and yeast extract contributed to manganese removal. These experiments also showed the interaction between these two components of the culture media, nevertheless the use of glucose did not prove significant. Considering these observations, the Doehlert design was used to generate a response surface. The model was significant with the p value lower than 0.05 and the lack-of-fit not significant (p > 0.05). The optimized composition of the growth medium was defined as 0.5 g L?1 of casamino acid-peptone and 0.25 g L?1 of yeast extract, whereas glucose could be removed from the original growth medium. When the optimized condition of the growth medium was used, the time required for manganese removal was reduced from 21 to 8 days. After optimization, B. cereus was capable of producing high manganese removal, reducing the residual concentration to levels below 1.0 mg L?1.  相似文献   

6.
The impact of nanoparticles (NPs) in zooplankton is poorly studied, particularly when organisms are exposed through diet. Food, constituted mainly by unicellular algae, can act as an important route of contamination for zooplankton. Since unicellular algae have a high surface area in relation to their volume, NPs can interact with their cell membranes and walls, as well as with exopolysaccharides secreted by them. In the present research, we investigated both the acute effects of waterborne titanium dioxide nanoparticles (TiO2 NPs), and its chronic effects via dietary exposure on the Neotropical freshwater zooplankton Ceriodaphnia silvestrii Daday, 1902 (Crustacea: Cladocera). The observed acute effects served as support for chronic tests, in which we investigated the effects of TiO2 NPs on survival and life history parameters (body length, numbers of eggs, and neonates produced) of cladoceran adult females, using the freshwater cosmopolitan chlorophycean Raphidocelis subcapitata as source of contamination of TiO2 NPs for zooplankton. R. subcapitata cells were exposed to concentrations of 0, 0.01, 1, and 10 mg L?1 of TiO2 NPs for 96 h, and then provided as food for females of C. silvestrii until the third brood was released. Significant toxic effects were observed in body length and total number of neonates and eggs produced by females of C. silvestrii at concentrations of 1 and 10 mg L?1 of TiO2 NPs. Survival was the most sensitive parameter when exposure was given via food. From the concentration of 0.01 mg L?1 of TiO2 NPs, there was a decrease in the survival of C. silvestrii females. The quantification of TiO2 NPs in algae evidenced that they have retained NPs in their cells, being, therefore, an important route of exposure and toxicity of TiO2 NPs to the studied microcrustacean.  相似文献   

7.
Environmental pollution with chromium is due to residues of several industrial processes. Bioremediation is an alternative actually considered to remove Cr (VI) from the environment, using adapted organisms that grow in contaminated places. Have been conducted studies with fungi mechanisms of interaction with chromium, most of which have focused on processes biosorption, characterized it by passive binding of metal components of the cell surface, and bioaccumulation, wherein the metal entry to cells occurs with energy expenditure. The paper presents the results of studies carried out on sorption of chromium (VI) ions from aqueous solutions by Fusarium sp. and Myrothecium sp. Both biomasses have the ability to take up hexavalent chromium during the stationary phase of growth and as well inactive conditions. Fusarium sp. showed 26% of biosorption with active biomass and 64% in inactive biomass; meanwhile, Myrothecium sp. obtained 97 and 82%, respectively. Both fungi showed adjust to pseudo-second-order model in active (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.96) and inactive biomass assay (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.99). The data of the active biomass test also confirmed to the intraparticle diffusion model (Fusarium sp. R 2 = 0.98; Myrothecium sp. R 2 = 0.93). The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Fusarium sp. and Myrothecium sp.  相似文献   

8.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

9.
Acute (24 h) and sublethal (35 days) effects of cadmium chloride (CdCl2) were examined in Cirrhinus mrigala using various endpoints (accumulation pattern, thyroid hormones (THs), and antioxidants). The mean concentrations of CdCl2 for 24 and 96 h were found to be 35.974 and 22.387 mg L?l, respectively. LC50 concentration of CdCl2 for 24 h (35.97 mg L?l) was used for the acute study. For the sublethal studies, fish were exposed to 3.59 mg L?1 (Treatment I) and 7.19 mg L?1 (Treatment II) corresponding to 1/10th and 1/5th of 24 h LC50 of the CdCl2. During acute exposure, higher accumulation of CdCl2 was noticed in the gill, liver, and kidney of C. mrigala, which is found in the order gill > liver > kidney tissues. Similarly, in sublethal treatments (Treatment I and II), a concentration and time-dependent increase of CdCl2 accumulation was noticed in the order of gill > liver > kidney. GSH, GST, and GPx activities were found to be relatively lower from the treated groups in both acute and sublethal treatments. However, LPO activity was significantly increased in CdCl2-treated fish C. mrigala. Further, plasma T3 reduction was more pronounced than T4 in acute study. During sublethal treatments, both T4 and T3 levels showed a continuous decrease as the exposure period extended. All the values in this study were statically significant (P < 0.01 and P < 0.05).  相似文献   

10.
11.
In this study, the impact of rose chafer (Cetonia aurata L.) larvae on net and gross methane (CH4) fluxes in soil from an old permanent grassland site (Giessen, Germany) was investigated. Previous studies at this site suggested the existence of Scarabaeidae larvae-induced “CH4-emitting hot spots” within the soil profile which may subsequently lead to increased CH4 oxidation. The net (soil + larvae) and gross (soil and larvae separated) CH4 fluxes were studied in a 3-month laboratory incubation. Addition of larvae changed the soil from a net sink (?330 ± 11 ng CH4 kg?1 h?1) to a net source (637 ± 205 ng CH4 kg?1 h?1). Supply of plant litter to the soil + larvae incubation jars tended to increase CH4 emissions which was not significant due to large variability. After 11–13 weeks of incubation, the net soil CH4 oxidation was significantly stimulated by 13–21% in the treatments containing larvae when these were taken out. Analysis of archaeal 16S rRNA genes revealed that the majority of the obtained clones were closely related to uncultured methanogens from guts of insects and other animals. Other sequences were relative to cultivated species of Methanobrevibacter, Methanoculleus, and Methanosarcina. Hence, Scarabaeidae larvae in soils (i) may represent an underestimated source of CH4 emissions in aerobic upland soils, (ii) may stimulate gross CH4 consumption in their direct soil environment, and, thus, (iii) contribute to the spatial heterogeneity often observed in the field with closed-chamber measurements. Long-term CH4-flux balances may be wrongly assessed when “exceptional” net CH4 flux rates (due to larvae hot spots) are excluded from data sets.  相似文献   

12.

Purpose

Re-establishment of soil nitrogen (N) capital is a priority in mine rehabilitation. We aimed to evaluate the effects of biochar addition on improving mine spoil N pools and the influence of elevated CO2 concentration on mine rehabilitation.

Materials and methods

We assessed the effects of pinewood biochar, produced at three temperatures (650, 750 and 850 °C, referred as B650, B750 and B850, respectively), on mine spoil total N concentrations with five different plant species, including a tree species (Eucalyptus crebra), N-fixing shrubs (Acacia floribunda and Allocasuarina littoralis) and C3 and C4 grasses (Austrodanthonia tenuior and Themeda australis) incubated at ambient (400 μL L?1) and elevated (700 μL L?1) atmospheric CO2 concentrations, as well as the effects of elevated CO2 on mine rehabilitation.

Results and discussion

Soil total N significantly improved following biochar incorporation under all plant species (P < 0.05) except for T. Australis. E. crebra had the highest soil total N (0.197%, 0.198% and 0.212% for B650, B750 and B850, respectively). Different from the negligible influence of elevated CO2 on soil properties under the grasses and the N-fixing shrubs, elevated CO2 significantly increased soil water and hot water extractable organic C (WEOC and HWEOC, respectively) and decreased total C under E. crebra, indicating that the nutrient demands were not met.

Conclusions

Biochar addition showed the potential in mine rehabilitation in terms of improving soil N pool, especially with E. crebra. However, it would be more difficulty to rehabilitate mine spoils in future with the rising atmospheric CO2 concentration.
  相似文献   

13.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

14.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

15.
This work investigates the degradation of Reactive Gray BF-2R dye (a blend of reactive yellow 145, reactive orange 122 and reactive black 5 dyes) using UV/H2O2, Fenton, and photo-Fenton-advanced oxidative processes, with artificial sunlight and UV-C radiations. The photo-Fenton process employing UV-C radiation was the most efficient under the conditions studied. The ideal conditions for the degradation of the dye, determined using a factorial design 23 and a study of the concentration of hydrogen peroxide ([H2O2]), were [H2O2] equal to 40 mg L?1, iron concentration [Fe] of 1 mg L?1, and pH between 3 and 4. The Chan and Chu non-linear kinetic model predicted the kinetic data with a degradation of over 98% for color and 68% for aromatics after 60 min. The behavior of the chemical oxygen demand fitted the first-order kinetic model well, with a degradation of 64% after 60 min. The Multilayer Perceptron 7-11-2 artificial neural network model enabled to model the degradation process of the aromatics and accurately predict the experimental data. Toxicity tests indicated that the post-treatment samples were non-toxic for Escherichia coli bacteria, and Portulaca grandiflora and Basil sabory seeds. However, they inhibited the growth of Lactuca sativa seeds and Salmonella enteritidis bacteria. The photo-Fenton process with UV-C radiation degraded the dye studied efficiently and the degradation percentages were, on average, 7% and 5% higher for color than those observed when employing the Fenton and UV/H2O2 processes, respectively. With the aromatic, however, they were 84% and 62% higher, thus justifying the use of this process.  相似文献   

16.
Soil components from different environments (forest (OF), semiarid (SZ), and sand (AS)) were separated from fulvic and humic substances, characterized by DRX, EDS(SEM), and zero-charge points were determined. The sorption of U(VI) by these materials was determined considering contact time, concentration of U(VI), pH, ionic strength, and presence of sodium chloride and humic acids. The time to reach the kinetic sorption equilibrium was ca. 1 min for the components of the SZ and AS soils, whereas those from OF required longer times. The zero-charge points of the materials indicate that in the experimental conditions, the surfaces of the materials are positively charged, as are uranyl ions. The sorption kinetic data were well fitted to the pseudo-second-order model, which indicates chemical sorption. The maximum sorption capacities for U(VI) obtained from data fitted to the Langmuir model of OF and SZ were 49 and 19.8 mg g?1 respectively. Sorption isotherm data for AS were best fitted to the Freundlich model (qe?=?5.4 mg g?1). The maximum values of distribution coefficients (Kd) were 23?±?7 L kg?1, 545?±?64 L kg?1, and 1178?±?229 L kg?1 for AS, SZ, and OF, respectively; these values may depend on pH, contact time, initial concentration of U(VI), and the composition of the materials. Sodium chloride in the aqueous solutions affects U(VI) sorption by the materials SZ and AS. The effect of humic acids depends on pH, only in acid media soluble humate complexes may be formed.  相似文献   

17.
Lima bean (Phaseolus lunatus L.) is an important food source in Brazil, especially in the northeast region, where its production and consumption are high. The goals of the present study were to estimate natural outcrossing rates and genetic diversity levels of Lima bean from Brazil, using ten microsatellite loci to obtain information for their conservation and breeding. Fourteen accessions were selected from an experiment in field with open-pollinated and with the presence of pollinating insects. Twelve seeds of each of the 14 selected accessions were grown in screenhouse for tissue harvest and DNA extraction. The multilocus model was used to determine the reproductive system. The outcrossing rate was 38.1 % (tm = 0.381; ts = 0.078), and the results indicated a mixed mating system with a predominance of selfing (1 ? tm = 61.9 %). The biparental inbreeding rate was high (t m  ? t s  = 0.303) and the multilocus correlated paternity was quite high (r p(m) = 0.889), indicating that the progeny was mostly composed of full sibs. The average effective number of pollen donors per maternal plant (N ep ) was low (1.12), and the fixation index for maternal genotypes (F m ) was 0.945, indicating that most genitors resulted from inbreeding. The studied families presented considerable genetic variability: A = 6.10;  %P = 30; H e  = 0.60 and H o  = 0.077. Total diversity was high (H T = 0.596), and a portion was distributed within families (H S = 0.058). In addition, diversity was higher between families (D ST = 0.538), and genetic differentiation was high (G ST = 0.902). The results presented here can be used in the implementation of Lima bean conservation and breeding programs in Brazil.  相似文献   

18.

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L?1) and elevated (700 μL L?1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.
  相似文献   

19.

Purpose

The dynamics and uncertainties in wetland methane budgets affected by the introduction of Alnus trabeculosa H. necessitate research on production of methane by methanogenic archaea and consumption by methane-oxidizing microorganisms simultaneously.

Materials and methods

This study investigated methane emission in situ by the closed chamber method, and methanogenic and methanotrophic communities using denatured gradient gel electrophoresis (DGGE) and quantitative PCR based on mcrA (methyl coenzyme M reductase), pmoA (particulate methane monooxygenase) genes in the rhizosphere and non-rhizosphere soils in the indigenous pure Phragmites australis T., and A. trabeculosaP. australis mixed communities in Chongxi wetland.

Results and discussion

Methane flux rate from the pure P. australis community was 2.4 times larger than that of A. trabeculosaP. australis mixed community in the rhizosphere and 1.7 times larger in the non-rhizosphere, respectively. The abundance of methanogens was lower in the mixed community soils (3.56?×?103–6.90?×?103 copies g?1 dry soil) compared with the P. australis community (1.47?×?104–1.89?×?104 copies g?1 dry soil), whereas the methanotrophs showed an opposite trend (2.08?×?106–1.39?×?106 copies g?1 dry soil for P. australis and 6.20?×?106–1.99?×?106 copies g?1 dry soil for mixed community soil). A liner relationship between methane emission rates against pmoA/mcrA ratios (R 2?=?0.5818, p?<?0.05, n?=?15) was observed. The community structures of the methane-cycling microorganism based on mcrA and pmoA suggested that acetoclastic methanogens belonging to Methanosarcinaceae and a particular type II methanotroph, Methylocystis, were dominant in these two plant communities.

Conclusions

The introduction of A. trabeculosa would promote the proliferation of methanotrophs, especially the dominant Methylocystis, but not methanogens, ultimately diminishing methane emission in the wetland.
  相似文献   

20.
C-banded pattern in two accessions of Thinopyrum bessarabicum (Save ex Rayss) A. Löve (2n = 2x = 14, EbEb) and their idiogram was established. C-banding analysis was further used to identify the chromosomes of Tritipyrum amphiploid (2n = 6x = 42, AABBEbEb) and a BC1F2 genotype from wheat and Tritipyrum. Two 18S-26S rDNA loci were detected on Th. bessarabicum chromosomes by in situ hybridization using an 18S-26S rDNA probe. Eb chromosomes in Tritipyrum generally were identified by their distinctive C-banding patterns which reflected heterochromatin regions. C-banding procedure resulted in sharp and distinct bands in one or both ends of Eb chromosomes without interval bands. Observed C-bands in Eb genome mainly reflected the telomeric and subtelomeric sequences which also showed more strong signals in genomic in situ hybridization. Results showed the importance of the C-banding technique as a screening tool in identification of addition and substitution lines in the progenies of wheat and Tritipyrum crosses during segregating generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号