首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
冬小麦灌浆期14C的同化、分配与调节   总被引:1,自引:0,他引:1  
在盆栽条件下 ,利用氮肥和改变源库比的方法 ,研究了籽粒形成期 2个冬小麦品种的 14 CO2 同化及同化物的分配特征。结果表明 ,莱州 953的 CO2 同化能力显著高于鲁麦 14 ,但后者 14 C光合产物向籽粒中的分配比例较高 ,茎叶中残留比例较小。去穗 1/ 3以减少籽粒库容后 ,莱州 953的 14 C同化受影响较小 ,而鲁麦 14的 14 CO2 同化量则显著上升。开花期增施氮素能继续提高莱州 953的 CO2 同化能力 ,但不能有效地增加鲁麦14 CO2 同化能力。14 C同化及其调节特征的品种间差异 ,应在栽培措施上有所考虑  相似文献   

2.
晚秋给两年生未结果温州蜜柑盆栽苗饲喂~(14)CO_2,随后测定不同物候期柑桔苗各器宫的~(14)C同化物的放射性总后度、比活度、~(14)C可溶性成分及氨基酸相对含量.结果表明,在次年新器官生长前,~(14)C同化物主要由叶片向根部运转,~(14)C总活度在根系中的分配达50%以上.从标记后半个月到休眠期,所有器官包括秋叶的放射性比活度增加,唯有春叶比活度明显降低,秋叶却能从春叶中获得养价补充.次年5~11月,新梢生长动用约1/5的14C同化物,同时地上部其他器官的~(14)C分配减少约8.57%,根部减少5.45%,表明新梢生长所需养分主要来自地上部.可溶性~(14)C随年周期进程不断减少.可溶性成分中氨基酸相对含量以新器官和生长期间的器官为高.韧皮部的放射性比活度明显高于木质部,氨基酸含量也以前者为高.  相似文献   

3.
在盐栽和池栽条件下,利用~(14)C研究了苹果幼树碳素同化物周年支转特性,试验结果表明;1.新梢各节位叶片~(14)C同化物输出年变化差異很大,在新梢旺长前期,下部叶输出率最高,其次是中部叶,而上部叶最低;至旺长期,下部叶输出达到高峰,中部叶输出急剧增加;停长期~(14)C同化物由向上运转为主转向几乎完全向下运转;停长后,中、下部叶~(14)C同化物输出逐漸下降,而下部叶下降更为严重。相反,上部叶输出率在全年中逐漸增加,到贮藏后期已接近中部叶,超过下部叶的水平;2.碳素同化物前期以主干贮备为主,后期转向以根系贮备为主;3.早春新梢生长所需贮藏营养主要来自根系和二年生枝。当新梢具15片叶时,贮藏营养的利用率达到高峰(15%),即达到营养转換期,贮藏营养在新梢的利用由下到上逐漸减少,以基部1~4片利用率最高。4.~(14)C同化物在不同根层中的分配春季上层根大于下层根,夏季下层根大于上层根,秋季上层根又大于下层根。  相似文献   

4.
覆膜对小麦14C-储备物在灌浆期转运分配的影响   总被引:4,自引:0,他引:4  
【目的】阐明覆膜对西北旱地小麦花前同化的14C-储备物在灌浆期转运分配的影响。【方法】在小麦花前大约1周进行14CO2饲喂,在扬花和灌浆期对植株各部位的14C进行放射性测定。【结果】花前同化的14C在开花时约90%已储存在茎鞘和穗轴中,10%存留在叶片中;开花后两者都向籽粒转运。成熟时叶片的14C几乎都外运了,茎鞘和穗轴中还有大约65%的14C,籽粒中的14C分配率占30%~35%。覆膜小麦的14C向籽粒的转运比对照慢。另外,覆膜小麦的叶面积大,叶片衰老慢,同化能力强,干物质多,籽粒产量高。【结论】覆膜使小麦增产的原因在于使小麦中前期生长加快,后期衰老延缓,因而绿叶面积大,同化能力增强,最终使得同化的干物质总量大大增加,所以产量增加;但并不促进同化物向籽粒的转运分配。  相似文献   

5.
在池栽条件下,对玫瑰红苹果幼树,分两期(新梢旺长期和营养贮备期)对新梢中部叶片进行~(14)CO_2饲喂,研究了~(14)C同化物在短期内(特别是一天)的输出分配变化。结果表明:一天中,~(14)C同化物输出呈双峰变化。第一高峰出现在上午,标记后約半小时就有相当比率输出,且输出随时间逐漸增多。中午输出受阻。下午再度加快,达到第二高峰。夜晚输出仍在进行。一般充分展开的叶片,最大输出率約为85%。营养贮备期与新梢旺长期输出动态基本一致,只是速度较慢。旺长期同化物具两极运输特点,可大致分为三个阶段,第一是向两极(向上、向下)运输阶段;第二是以下运为主,上下比例变化平稳阶段;第三是以根系向上运转为主的再循环阶段。试验还表明,新根生长所需的同化物主要是当时的新同化者。  相似文献   

6.
高温胁迫对冬小麦灌浆期物质运输与分配的影响   总被引:10,自引:0,他引:10  
以14C饲喂旗叶为方法,研究了高温胁迫(持续变温及控制高温)对冬小麦灌浆期物质运输与分配的影响。结果表明,高温胁迫影响旗叶光和性能并影响光和产物的输出与向库器官的分配,减少籽粒和韧皮都汁液中蔗糖的含量,改变14C同化物的输出动态,导致灌浆强度和千粒重急剧下降,最终导致产量降低。  相似文献   

7.
氮磷配施对冬小麦干物质积累、分配及产量的影响   总被引:7,自引:0,他引:7  
为了探究氮磷配施对小麦干物质向籽粒分配的调控效应,以高产小麦品种‘鲁原502'为试验材料,比较不同氮磷处理干物质积累、分配、产量及构成因素等性状差异。结果表明,适量增加施氮量和施磷量可促进小麦起身期至成熟期干物质积累以及开花期、成熟期干物质向营养器官的分配,对越冬前干物质积累量无显著影响。增加施氮量可提高花前营养器官贮藏同化物转运量、花后同化物输入籽粒量以及对籽粒贡献率,同时降低花前营养器官总转运量对籽粒贡献率;增加施磷量则可提高花前营养器官贮藏同化物总转运量以及花后同化物输入籽粒量。增加施氮量和施磷量均可提高小麦穗数、穗粒数,进而增加产量。研究结果表明,240kg·hm~(-2) N、100kg·hm~(-2) P_2O_5(N_2P_2)处理可作为黄淮麦区干物质积累分配及获得高产的施肥参考。  相似文献   

8.
用~(14)CO_2在晋谷14的拔节,抽穗开花两个生育期,分别进行两次标记,分五次取样测定光合产物运转分配与再分配的结果表明:拔节期的光合产物主要积累在新生茎节,叶片及根系,对籽粒的贡献很小。抽穗开花期叶片的光合产物,穗码和籽粒的积累量为26.63%,到成熟时已增至32.09%,说明此期的叶片对籽粒具有重大贡献。  相似文献   

9.
本文从碳素同化、消耗与积累的角度分析了苏协一号和徐州424两个栽培大豆品种第二复叶一生中同化物潜在供应能力及~(14)C同化物输出速率的变化。在同化物供应高值期,光合产物的潜在供应能力最大,比叶重和呼吸速率相当稳定,~(14)C光合产物输出速率与潜在供应能力间呈极显著线性相关。测定结果还表明,磷酸蔗糖合成酶(SPS)对叶片中光合产物输出有重要调节作用。  相似文献   

10.
小麦灌浆期同化产物的运转分配及高矮秆品种差异的研究   总被引:1,自引:0,他引:1  
本试验利用放射性核素~(14)C及~(32)P研究了小麦不同秆高品种,在生育后期同化物质的运转与分配的差异,对矮秆品种灌浆不良、易青枯早衰的原因进行了探讨。试验结果表明,从灌浆初期至成熟,籽粒中放射性产物分配率迅速增加,11个品种平均,由32.5%增至77.8%,茎鞘各层则大幅度降低。此时的功能器官旗叶与倒二叶,存在着输送方向上的分工,旗叶同化产物70—80%运往穗部,其余运往植株上部茎鞘叶,而倒二叶却有50%同化产物供应植株上部及中部茎鞘叶,其余供应下部茎鞘叶及穗,约各占25%左右。生育后期茎鞘中贮存性干物质,亦呈现着向穗部的再输出,约占籽粒干重增长量的30—50%,不同品种间输出率有较大差异,变幅20—80%。矮秆品种功能器官的作用并不逊于高秆品种,其倒二叶同化物质对穗的贡献较高秆品种为高,但同时向茎鞘的分配率降低了30%,因而不利于维持生育后期植株中下部营养器官的代谢与功能,表现了矮秆品种易青枯早衰、茎鞘干物质向穗部的输出率仅为高秆品种的一半左右。  相似文献   

11.
耐密型玉米光合速率和光合产物转运分配研究   总被引:7,自引:2,他引:7  
应用~(14)C同位素示踪技术,研究耐密型玉米的光合速率和光合产物转运分配规律。结果表明,玉米光合速率在耐密型和普通型之间没有显著差异。在8~16时,光合作用强度较高,光合速率在50~70mgCO_2/dm~2·h,有午睡现象。在12~14时,叶质重增加明显,光合速率与叶质重呈正相关。穗位叶的光合物质,有80%输送给其它组织器官,其中果穗占50%~60%。掖单13比对照丹玉13平均增产18%。耐密型玉米能耐密植,增加了单位面积株穗数,从而获得高产。  相似文献   

12.
小麦源库比与产量形成期同化物分配及结实性的关系   总被引:9,自引:0,他引:9  
采用^14C示踪法研究表明,源库比是影响同化物分配的重要因素。源库比大,向穗部分配比例小;反之,向穗部分配比例大。不同品种源库在调节同化物分配上的作用不同,源加比是影响结实性和粒重的重要因素,但其作用因品种而异。相对减少源对鲁215953、鲁麦5号、鲁麦7号、鲁麦14号的穗粒数和粒重影响较小,而使鲁麦15号,辐63穗粒数和粒重明显降低。孕穗期叶面施氮是一项延衰增源措施,它对鲁215953的结实性无  相似文献   

13.
Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),field experiments were conducted in Gaocheng County of Hebei Province,China.Four winter wheat cultivars,i.e.,Shimai 14,Jifeng 703,Shimai 12,and Shixin 828,and four cultivars,i.e.,Temai 1,Shimai 12,Shixin 531,and Shixin 828,were used in the experiment,during 2004-2005 and 2005-2006,respectively.Plant samples were taken from the plots at each growing stage for Zn concentration analysis.The main results showed that the concentration of Zn in various above-ground organs of wheat was 9.5-112.5 mg kg-1 at different growing stages.The organ with the highest Zn concentration differed with the change of growth center at different growing stages.Accumulation of Zn in leaf blades was the highest among all the organs during early growing period,and more than 50% of the Zn accumulation was distributed to leaf blades before jointing,and higher than that to other organs.In late growing period,however,the accumulation of Zn in grains was the highest,and 58.1% of the Zn accumulation was distributed in grains at maturity.The total accumulation of Zn in wheat plant during its life span ranged from 384.9 to 475.9 g ha-1.The amount of Zn required for the formation of 100 kg grain yield ranged from 4.3 to 5.2 g.All the organs were ordered in such a sequence that leaf blades 〉 spikes 〉 leaf sheaths 〉 stems according to their net absorption and transportation of Zn as well as their contribution to Zn accumulation in grains.58.2-60.3% of the Zn accumulated in grains was redistributed from other organs,mostly from leaf blades.Concentration and accumulation of Zn in all the organs of wheat was high during early and middle growing periods,while accumulation of Zn in grains during late growing period mainly depended on the redistribution from other organs.According to these characteristics of Zn absorption and accumulation,Zn should be applied as seed dressing or basal fertilizer,so as to accelerate the early growth and Zn absorption of wheat.  相似文献   

14.
高产冬小麦对锌的吸收、积累与分配   总被引:2,自引:0,他引:2  
目的明确高产(9000kg·hm-2)冬小麦的锌素吸收、积累与分配特点,为确定锌肥施用技术提供依据。方法2004—2006两年中各采用4个品种,于各生育时期在田间取植株样品,分器官测定锌的含量。结果小麦各生育时期各器官的含锌量为9.5—112.5mg·hm-2(干重),含锌量最高的器官随生长中心的转移而更替。生育前期叶片中锌的积累量最高,拔节前叶片中锌的分配率占全株总积累量的50%以上;生育后期籽粒中锌的积累量最高。小麦一生锌的总积累量为384.9—475.9g·hm-2,生产100kg籽粒吸收锌4.3—5.2g。籽粒由再分配获得的锌占籽粒总锌量的58.2%—60.3%,各器官对锌的净吸收积累量、转移量及对籽粒锌的贡献均为叶片穗叶鞘茎秆。结论各器官生育前中期含锌量和积累量较高,后期籽粒锌的积累主要取决于各器官锌的再分配。根据锌的这些吸收积累特点,锌肥主要应作为播种前拌种或基肥施用,以促进小麦生育前期的生长和锌的吸收。  相似文献   

15.
超高产冬小麦铜素的吸收、积累和分配   总被引:2,自引:0,他引:2  
 【目的】明确超高产冬小麦(≥9 000 kg•hm-2)的铜素营养特点,为确定铜肥施用技术提供依据。【方法】2005—2006年度种植4个冬小麦品种,于各生育时期在田间取植株样品,分器官测定铜的含量。【结果】小麦地上部不同器官中的铜素含量为5.5—18.8 mg•kg-1(DW),器官间比较,叶片含铜量始终较高,但含铜量最高的器官随生长中心的转移而更替。生育前、中期各器官中以叶片的铜积累量最高,孕穗期以前叶片中铜的分配率几乎均占全株总积累量的55%以上;接近成熟时籽粒中铜的积累量最高,成熟时籽粒中铜的分配率达到全株的33.7%—37.7%。全生育期的吸收强度以生育中期(起身至开花)最高,生育后期(开花至成熟)次之,生育前期(出苗至起身)最小。9 000 kg•hm-2左右产量水平的冬小麦全生育期铜的积累量为144.8—163.8 g•hm-2,每生产100 kg籽粒平均需吸收铜1.7 g。成熟期籽粒中积累的铜,在较大程度上取决于开花后的直接吸收,而来自营养器官中铜再分配的比率仅占17.1%。【结论】根据铜的这些吸收积累特点,铜肥应主要作为播种前拌种或基肥施用,以促进小麦生育前期的生长和吸收。但在早期施铜不足的情况下,还应该采取中后期叶面喷铜的措施,以保证关键吸收阶段充足的铜素供应。  相似文献   

16.
小麦体内次生物质对麦蚜的抗性作用研究   总被引:18,自引:2,他引:18  
 采用蚜量比值法评价了 7个小麦品种 (系 )对麦长管蚜的抗性 ,并用紫外分光光度法测定了各品种 (系 )旗叶和穗部总酚和吲哚生物碱含量 ,并通过酶标仪法测定了来自不同抗级小麦穗部麦长管蚜体内的羧酸酯酶活性的差异 ,以此研究小麦体内次生物质含量的差异及其抗麦长管蚜的关系和抗性生化机制。结果表明 ,旗叶和穗部总酚和吲哚生物碱含量不同 ,表现出对麦长管蚜种群影响的差异。穗部吲哚生物碱含量与麦长管蚜蚜量比值之间呈极显著的负相关 ,相关指数R =- 0 .9896。而旗叶吲哚生物碱、旗叶总酚和穗部总酚含量与麦长管蚜蚜量比值的相关系数分别为 - 0 .6 82 6、- 0 .4 2 0 8和 - 0 .5 6 2 3,相关性均不显著。取食不同抗蚜品种 (系 )穗部的蚜虫羧酸酯酶活性与穗部吲哚生物碱含量呈显著相关性 (R =0 .96 4 6 ) ,而与穗部总酚含量相关性不显著 (R =0 .4 95 3)。与总酚含量相比 ,小麦穗部吲哚生物碱含量高低与小麦对麦长管蚜抗性关系更密切。  相似文献   

17.
对黄淮麦区几个高产小麦品种光合产物的积累与分配及其籽粒灌浆特性进行了研究 ,结果表明 ,供试品种生物干重积累的动态呈“S”型曲线 ,苗期增长缓慢且冬性品种积累量相对较小 ,春性品种积累量较大 ,3月中下旬积累迅速增加 ,峰值在 6月上旬 ;花后光合产物是籽粒产量的主要来源 ,花后光合产物的积累对籽粒产量的贡献至少达 6 0 % ,最高可达 88% ;籽粒灌浆的基本特征表现为 ,第 1和第 3阶段灌浆速率基本相当 ,第 2阶段是第1阶段灌浆速率的 2 .7倍。因此 ,花前生物学产量较高 ,花后籽粒第 2阶段灌浆速率较快是实现小麦育种粒大粒饱的重要途径  相似文献   

18.
植物生长调节剂对小麦灌浆进程及产量的效应   总被引:3,自引:0,他引:3  
研究结果表明,不同种植密度下的不同小麦品种花期叶面喷施MS增抗剂、丰收素及481,有显著的促粒增重和增产效应.每穗增加0.5~3.3粒;每粒平均日增重0.1346~0.5110mg;穗重增加41.81~109.78mg;每穗干物质日积累量灌浆前期较对照平均增加2269mg/d·穗,中期增加16.11mg/d·穗,后期降低10.07mg/·d穗;净增产375~1500kg/hm2.其中,MS增抗剂促粒增重效应最为显著,每穗净干物质积累量比对照高177.87mg,灌浆速度最大值的出现比对照提前1.1~2.4d.  相似文献   

19.
 采用#+(14)C示踪方法对源库调节与晚播小麦籽粒灌浆期光合物质分配的关系进行了研究。晚播小麦在籽粒灌浆期旗叶的光合物质主要用于穗部籽粒生长;倒二叶光合物质亦主要供给籽粒,但向茎秆和根系中的分配增多;倒三叶是标记的三叶中光合物质向根系分配比例最大,向籽粒分配比例最小的叶片。研究表明,源库调节能影响到晚播小麦籽粒灌浆期的光合物质分配。穗库容降低,各叶片光合物质向穗部籽粒分配比例减少,向根系、茎叶中分配增多;叶源量减少,一般则向穗部籽粒分配比例增多。不同类型品种叶片光合物质在植株各器官间的分配受源库调节的影响程度不同。晚播小麦源库调节对穗粒数、粒重及其它穗部性状的影响因不同类型品种而异。相对减少源对鲁215953、鲁麦5号、鲁麦7号和鲁麦14号的穗粒数、粒重影响较小,但使鲁麦15号和辐63的穗粒数和粒重明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号