首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系   总被引:16,自引:1,他引:15  
景蕊莲  昌小平 《作物学报》1999,25(4):494-498
在缓慢土壤水分胁迫一复水的变水处理条件下,小麦幼苗地上部分相对含水量在80%~70%时,甜菜碱含量及甜菜碱醛脱氢酶活性最高,相对含水量大于80%或小于70%,甜菜碱的含量和甜菜碱醛脱氢酶活性都降低,并且两者变化是“同步”的。水分胁迫时,小麦幼苗迅速积累甜菜碱,抗旱型小麦增加6~8倍,水分敏感型增加4倍。积累甜菜碱与  相似文献   

2.
An experiment was conducted to investigate the physiological and biochemical responses of two hexaploids viz., C 306 (water stress tolerant) and Hira (water stress susceptible), and two tetraploids, HW 24 (Triticum dicoccum) and A 9‐30‐1 (Triticum durum) wheat genotypes to water stress under pot culture condition. Water stress was imposed for a uniform period of 10 days at 50, 60 and 70 days after sowing (DAS) and observations were recorded at 60, 70 and 80 DAS. Total dry matter and plant height were recorded at harvest. Water stress caused a decline in relative water content (RWC), chlorophyll and carotenoid content, membrane stability and nitrate reductase activity and increased accumulation of proline at all stages and abscisic acid (ABA) at 80 DAS in all the genotypes. Both the tetraploids showed a lower reduction in RWC and highest ABA accumulation under water stress. Among the hexaploids Hira showed the most decline in RWC and the lowest ABA accumulation. The tetraploids also showed comparatively higher carotenoid content and membrane stability, closely followed by C 306, while Hira showed the minimum response under water stress. Nitrate reductase activity and chlorophyll content under irrigated conditions were highest in Hira but under water stress the lowest per cent decline was observed in C 306, followed by HW 24, A 9‐30‐1, and Hira. Proline accumulation under water stress conditions was highest in hexaploids C 306 and Hira and lowest in tetraploids HW 24 and A 9‐30‐1. Tetraploids HW 24, followed by A 9‐30‐1 maintained higher plant height and total dry matter (TDM) under water stress and also showed a lower per cent decline under stress than hexaploids C 306 and Hira. From the results it is clear that proline accumulation did not contribute to better drought tolerance of tetraploids than hexaploids. It is also apparent that water stress tolerance is the result of the cumulative action of various physiological processes, and all the parameters/processes may not be positively associated with the drought tolerance of a particular tolerant genotype.  相似文献   

3.
In four wheat ( Triticum aestivum L.) cultivars of tall (C306 and Narmada) and dwarf (HD2329 and Kundan) type, post-anthesis water stress affected the dry matter accumulation in plant parts with respect to main shoot controls. HD2329 among the dwarf types and Narmada 112 among the tall types were more adversely affected by stress, with greater reductions in their biomass and grain yield. Of the tolerant types, C306 (tall) showed a marginal reduction while Kundan (dwarf) had no reduction in these parameters as a result of stress. The results also indicated a varietal response to carbon and nitrogen accumulation and their partitioning in the main shoot when subjected to post-anthesis stress. In the susceptible dwarf cultivar HD2329, and in the susceptible tall cultivar Narmada 112, carbon and nitrogen contents were reduced in the grains of stressed main shoots. Of the tolerant cultivars, the dwarf type Kundan was not affected by stress, while the tall type C306 registered an increase in carbon content and its partitioning to grain.  相似文献   

4.
干旱胁迫对花生叶片SOD活性和蛋白质的影响   总被引:66,自引:2,他引:64  
姜慧芳  任小平 《作物学报》2004,30(2):169-174
以不同类型的抗旱花生种质为材料,于花针期干旱胁迫处理43 d,调查和分析了水分胁迫对叶片SOD活性、蛋白质和水势影响的动态变化以及干旱胁迫对花生主要经济性状的影响。分析结果表明在干旱胁迫初期,花生叶片的SOD活性下降,蛋白质含量增加,此时品种之间的SOD活性变化差异不明显,但蛋白质含量差异显著。在严重干旱胁迫时  相似文献   

5.
The influence of iso-osmotic (−0.7 MPa) NaCl and PEG stress on growth, osmotic adjustment and antioxidant defense mechanisms was investigated in the in vitro cultures of Sesuvium portulacastrum (L.) L. The decreased relative growth rate (RGR) and water content of PEG-stressed calli in comparison to NaCl was found to be correlated with differences observed in the energy expenditure for the maintenance of osmotic balance. Osmotic adjustment in the NaCl-stressed calli favored higher accumulation of saline ions and soluble sugars, whereas PEG-stressed calli confirmed increased levels of organic osmolytes (proline, glycine betaine and soluble sugars). Permeability of Na+ ions across the membrane revealed increased relative electrolytic leakage (REL) in NaCl-stressed calli, however non-penetrating and highly viscous solution of PEG amplified the peroxidation of membrane lipids. Increased activities of superoxide dismutase and catalase displayed efficient removal of toxic reactive oxygen species in comparison to ascorbate peroxidase in the calli exposed to iso-osmotic stress. These findings suggest that differential tolerance potential to iso-osmotic NaCl and PEG stress in terms of osmotic adjustment appears to be the prime defense mechanism of Sesuvium for its survival under iso-osmotic stress conditions at the expense of reduced growth and water content.  相似文献   

6.
Terminal drought is threatening the wheat productivity worldwide, which is consumed as a staple food by millions across the globe. This study was conducted to examine the influence of foliage‐applied stress signalling molecules hydrogen peroxide (H2O2; 50, 100, 150 μm ) and nitric oxide donor sodium nitroprusside (SNP; 50, 100, 150 μm ) on resistance against terminal drought in two bread wheat cultivars Mairaj‐2008 and BARS‐2009. These stress signalling molecules were applied at anthesis stage (BBCH 61); drought was then imposed by maintaining pots at 35% water holding capacity. Terminal drought caused significant reduction in grain yield of both tested bread wheat cultivars; however, foliage application of both stress signalling molecules at either concentration improved the performance of both bread wheat cultivars. Maximum improvement in 100‐grain weight (12.2%), grains per spike (19.7%), water‐use efficiency (WUE; 19.8%), chlorophyll content index (10.7%), total soluble phenolics (21.6%) and free leaf proline (34.3%), and highest reduction in leaf malondialdehyde contents (20.4%) was recorded when H2O2 was foliage‐applied at 100 μm . Foliage application of SNP enhanced the grains per spike, 100‐grain weight and grain yield by 14.9%, 11.3% and 20.1%, respectively, than control. The foliage‐applied stress signalling molecules improved the accumulation of soluble phenolics, proline and glycine betaine with simultaneous reduction in malondialdehyde contents, which enabled wheat plants to sustain the biological membranes under stress resulting in better stay green (high chlorophyll contents) under drought. This helped improving the grain number, grain weight, grain yield, WUE and transpiration efficiency. In crux, foliage‐applied H2O2 and SNP, at pre‐optimized rate, may be opted to lessen the drought‐induced yield losses in bread wheat in climate change conditions.  相似文献   

7.
New strategies to enhance growth and productivity of food crops in saline soils represent important research priorities. This study has investigated the role of certain priming techniques to induce salt tolerance of bread wheat. Wheat grains were soaked in 0.2 mm sodium nitroprusside as nitric oxide donor (redox priming), diluted sea water (halopriming) and the combination of both (redox halopriming). Grains were also soaked in distilled water (hydropriming); in addition, untreated grains were taken as control. Our results indicated that priming treatments significantly improved all growth traits and increased leaf pigments concentration as compared to the control. Priming treatments markedly enhanced membrane stability index, proline, total soluble sugars and K+ concentration with simultaneous decrease in the concentration of Na+ and malondialdehyde (MDA). Furthermore, yield and yield‐related traits such as plant height, spike length, total number of tillers, 1000‐grain weight, straw and grain yield considerably affected by priming treatments. Moreover, the grain yield of both genotypes was positively affected by redox halopriming treatment. However, the extent of enhancement was more prominent in Gemmiza‐9 (salt sensitive) than that in Sakha‐93 (salt‐tolerant). Overall, this study clearly indicated that redox halopriming treatment is a promising and handy technique to induce salinity tolerance of wheat genotypes.  相似文献   

8.
The allelopathic water extracts (AWEs) may help improve the tolerance of crop plants against abiotic stresses owing to the presence of the secondary metabolites (i.e., allelochemicals). We conducted four independent experiments to evaluate the influence of exogenous application of AWEs (applied through seed priming or foliage spray) in improving the terminal heat and drought tolerance in bread wheat. In all the experiments, two wheat cultivars, viz. Mairaj‐2008 (drought and heat tolerant) and Faisalabad‐2008 (drought and heat sensitive), were raised in pots. Both wheat cultivars were raised under ambient conditions in the wire house till leaf boot stage (booting) by maintaining the pots at 75% water‐holding capacity (WHC). Then, managed drought and heat stresses were imposed by maintaining the pots at 35% WHC, or shifting the pots inside the glass canopies (at 75% WHC), at booting, anthesis and the grain filling stages. Drought stress reduced the grain yield of wheat by 39%–49%. Foliar application of AWEs improved the grain yield of wheat by 26%–31%, while seed priming with AWEs improved the grain yield by 18%–26%, respectively, than drought stress. Terminal heat stress reduced the grain yield of wheat by 38%. Seed priming with AWEs improved the grain yield by 21%–27%; while foliar application of AWEs improved the grain yield by 25%–29% than the heat stress treatment. In conclusion, the exogenous application of AWEs improved the stay green, accumulation of proline, soluble phenolics and glycine betaine, which helped to stabilize the biological membranes and improved the tolerance against terminal drought and heat stresses.  相似文献   

9.
Developing tolerant genotypes is crucial for stabilizing maize productivity under drought stress conditions as it is one of the most important abiotic stresses affecting crop yields. Twenty seven genotypes of maize (Zea mays L.) were evaluated for drought tolerance for three seasons under well watered and water stressed conditions to identify interactions amongst various tolerance traits and grain yield as well as their association with SSR markers. The study revealed considerable genetic diversity and significant variations for genotypes, environment and genotype × environment interactions for all the traits. The ranking of genotypes based on drought susceptibility index for morpho-physiological traits was similar to that based on grain yield and principal component analysis. Analysis of trait – trait and trait – yield associations indicated significant positive correlations amongst the water relations traits of relative water content (RWC), leaf water potential and osmotic potential as well as of RWC with grain yield under water stressed condition. Molecular analysis using 40 SSRs revealed 32 as polymorphic and 62 unique alleles were detected across 27 genotypes. Cluster analysis resulted in categorization of the genotypes into five distinct groups which was similar to that using principal component analysis. Based on overall performance across seasons tolerant and susceptible genotypes were identified for eventual utilization in breeding programs as well as for QTL identification. The marker-trait association analysis revealed significant associations between few SSR markers with water relations as well as yield contributing traits under water stressed conditions. These associations highlight the importance of functional mechanisms of intrinsic tolerance and cumulative traits for drought tolerance in maize.  相似文献   

10.
Water stress increased mono-saccharides and decreased di-saccharides concentration in four field grown genotypes, regardless of their different drought susceptibility. Sandy, a USA genotype known for giving satisfying yields in droughty environments, outstood the other cultivars in terms of betaine and proline concentration in leaf tissues; these aminoacids are therefore considered responsible for the most negative Ψs perceived in this cultivar. PV-curve technique revealed for Tullio, the drought susceptible Italian genotype, an osmotic adjustment of –0.63 MPa, four times greater than in Pandas, though this drought resistant cultivar showed a similar content in osmotically active substances; the authors therefore hypothesize an alternative mechanism in the response to water shortage in Tullio.  相似文献   

11.
选用2个粒重差异较大的小麦品种济麦20(小粒型)和山农710331(大粒型),对比研究其籽粒发育过程中4种主要内源激素(IAA,GAs,ZR和ABA)的含量变化及籽粒灌浆特征。结果表明,2个品种内源激素含量变化动态趋势基本一致,但品种间内源激素含量存在基因型差异。在籽粒发育过程中,IAA,GAs和ZR含量呈籽粒发育前期高、后期低的趋势,而ABA含量呈“V”型曲线变化。用Logistic方程拟合籽粒灌浆过程可以看出,籽粒灌浆启动时间、灌浆速率以及灌浆持续时间共同决定小麦最终籽粒重的高低。与小粒型品种济麦20相比,大粒型品种山农710331籽粒发育初期较高的ZR含量使其籽粒灌浆启动时间早;在整个籽粒发育过程中较高的GAs,ZR和ABA含量与较高的籽粒灌浆速率相联系;籽粒发育后期较高的ZR含量及相对较低的ABA增幅,可能是其籽粒灌浆持续时间较长的一个重要原因。  相似文献   

12.
棉花不同钾效率基因型对水分和低钾胁迫的响应研究   总被引:2,自引:1,他引:1  
为探明不同钾效率棉花基因型在水分和低钾胁迫条件下的差异,采用盆栽试验,对2种基因型棉花一些生理生化指标及生物学产量的差异性进行研究。结果表明,棉花在逆境胁迫条件下,其生长状况及生理生化过程中发生一系列适应性改变,不同基因型、不同生育时期,其抗逆性也不同。表现为:不同处理条件下,棉花钾高效基因型(103)叶绿素含量指数高于棉花钾低效基因型(122),生物学产量也较高。同时103叶片丙二醛(MDA)含量低于122,表明103抗逆性较强。2种基因型间可溶性糖与脯氨酸(Pro)含量以及过氧化物酶(POD)活性变化一致,差异不显著。  相似文献   

13.
在田间试验条件下研究了花后不同时期高温、弱光和温光双重胁迫对小麦籽粒内源激素含量与增重进程的影响。结果表明,灌浆中期温光双重胁迫处理对小麦粒重的影响最为显著,不同时期3种处理后,单粒重的降低主要是缓增期灌浆速率和平均灌浆速率显著降低所致,而灌浆持续期对其影响较小。灌浆进程中籽粒GA3含量的降低或ABA含量的升高可能是导致平均与最大灌浆速率以及渐增期、快增期和缓增期灌浆速率变化的生理原因。对籽粒各内源激素变化速率之间及其与籽粒平均灌浆速率的相关分析表明,对籽粒灌浆速率的调节作用GA3主要体现在灌浆前期(开花后7~12 d)和后期(开花后19~28 d);而ABA主要是在灌浆中期(开花后12~19 d),且籽粒平均灌浆速率与ABA之间的关系要比其与GA3的关系相对密切。整个籽粒灌浆过程,ZR和IAA含量变化与籽粒平均灌浆速率的相关性均不显著。  相似文献   

14.
Irrigation of wheat plants with seawater (10 and 25 %) led to a significant increase in free and bound ABA in leaves, especially at 25 %. The relative water content (RWC), particularly at 25 %, and water use efficiency of the seawater-irrigated plants were lower than those of the control. Grain pre-soaking in GA3, IAA or ABA reduced the levels of accumulated ABA (free and bound) resulting from seawater irrigation. The stress imposed by seawater generally reduced yield and yield components of wheat plants, and the effect was more pronounced at the higher level of seawater (25 %). Furthermore, seawater treatments decreased the carbohydrate content and increased the protein content of the developing grains. The effect of seawater treatments on ion concentration in the developing grains was not consistent. The application of growth bioregulators appeared to mitigate the effect of seawater salinity stress on wheat productivity. Gibberellic acid gave the best effect. The economic yield (grain yield) had a strong positive correlation with RWC, water use efficiency for grain yield, water use efficiency for biomass, plant height, shoot fresh and dry weights, grain number/main spike, kernel weight and harvest index.  相似文献   

15.
脱落酸(abscisic acid, ABA)是一种重要的植物激素,与作物的抗干旱胁迫密切相关。本试验以灌浆期的豫麦949和陕麦5号小麦品种为试材,PEG干旱处理72 h后,比较了脱落酸对小麦相对水分含量、叶绿素、丙二醛含量以及产量的影响,并采用反转录半定量PCR方法测定PSII中psbA基因转录水平的变化。结果表明,干旱胁迫明显降低小麦叶片中相对水分和叶绿素含量,增加丙二醛含量,抑制psbA基因的转录,降低小麦的产量,而外源脱落酸能明显缓解这些胁迫反应。与豫麦949相比,陕麦5号中质膜损伤较小,相对水分和叶绿素含量、产量以及psbA基因转录水平的下降也较小,外源脱落酸处理后,各参数也能够恢复到对照水平,说明不同小麦品种的抗干旱胁迫能力与psbA基因的表达水平密切相关。本试验的研究结果也首次发现了外源ABA能够调控干旱胁迫下灌浆期小麦psbA基因的表达,稳定PSII系统中重要基因的转录水平,从而提高灌浆期小麦的抗干旱胁迫能力。  相似文献   

16.
An experiment was conducted on five wheat ( Triticum aestivum L.) cultivars, C 306, PBW 175 (tolerant to water stress), DL 153-2 (moderately tolerant to water stress), HD 2428 and HD 2329 (recommended for irrigated conditions, susceptible to water stress), under pot culture conditions to study the effect of water stress on oxidative injury and antioxidant activity. Water stress significantly decreased relative water content (RWC), ascorbic acid content and membrane stability, and increased hydrogen peroxide and malondialdehyde content, a measure of lipid peroxidation, and activities of antioxidant enzymes in all the genotypes at 7, 17 and 27 days after anthesis (DAA). Water stress tolerant genotypes C 306 and PBW 175, closely followed by DL 153-2, were superior to HD 2428 and HD 2329 in maintaining high RWC, ascorbic acid content and membrane stability and lower hydrogen peroxide content and lipid peroxidation (malondialdehyde content) under water stress at the three stages. The highest activities of glutathione reductase and catalase under water stress were observed in C 306, PBW 175 and DL 153-2 and the lowest activities in HD 2428 and HD 2329 at all the stages. Superoxide dismutase activity at all stages under irrigated conditions and at the first and second stages under water stress conditions did not show significant variation among the different genotypes, but at the last stage under water stress the enzyme activity was highest in C 306, closely followed by PBW 175 and DL 153-2, and lowest in HD 2428 and HD 2329. It is apparent that water stress induces an increase in hydrogen peroxide content and consequently lipid peroxidation and membrane injury (reduced membrane stability). The degree of oxidative stress and antioxidant activity seems to be closely associated with the tolerance/susceptibility of a genotype to water stress.  相似文献   

17.
The calli cultures of Guizotia abyssinica (niger) cultivars IGP 76 and GA 10 were exposed to different levels of salt treatments (0, 30, 60, and 90 mM NaCl), in order to evaluate growth, physiological, and biochemical responses. A significant decrease in relative growth rate and tissue water content of GA 10 calli than IGP 76 under salt-stress conditions was associated with higher sodium ion accumulation. Osmotic adjustment revealed by the osmolytes (proline, glycine betaine, and total soluble sugars) accumulation was significantly higher in IGP 76 salt-stressed calli as compared to GA 10. The sustained growth and better survival of IGP 76 calli was correlated with lower malondialdehyde content and increased superoxide dismutase, ascorbate peroxidase, and catalase activities and higher α-tocopherol content in comparison to GA 10. The higher osmolytes accumulation and presence of better antioxidant system suggested superior adaptation of IGP 76 calli on salt-containing medium for prolonged periods in comparison to GA 10. The regeneration frequency, organogenesis, and acclimatization response of the plants derived from salt-adapted calli was comparatively lower than the plants derived from control calli of IGP 76. The growth, physiological, and biochemical characterization of the salt-tolerant regenerated plants exposed to stepwise long-term 90 mM NaCl treatment revealed no significant changes in comparison to the control. Thus, our results suggests the development of an efficient protocol for in vitro selection and production of salt-tolerant plants in self-incompatible crop, niger, and an alternative to traditional breeding programs to increase the abiotic stress tolerance.  相似文献   

18.
Salinity stress causes ion toxicity and osmotic imbalances, leading to oxidative stress in plants. Arbuscular mycorrhizae (AM) are considered bio‐ameliorators of saline soils and could develop salinity tolerance in crop plants. Pigeonpea exhibits strong mycorrhizal development and has a high mycorrhizal dependency. The role of AM in enhancing salt tolerance of pigeonpea in terms of shoot and root dry weights, phosphorus and nitrogen contents, K+ : Na+, Ca2+ : Na+ ratios, lipid peroxidation, compatible solutes (proline and glycine betaine) and antioxidant enzyme activities was examined. Plants were grown and maintained at three levels of salt (4, 6 and 8 dSm?1). Stress impeded the growth of plants, led to weight gain reductions in shoots as well as roots and hindered phosphorus and nitrogen uptake. However, salt‐stressed mycorrhizal plants produced greater root and shoot biomass, had higher phosphorus and nitrogen content than the corresponding uninoculated stressed plants. Salt stress resulted in higher lipid peroxidation and membrane stability was reduced in non‐AM plants. The presence of fungal endophyte significantly reduced lipid peroxidation and membrane damage caused by salt stress. AM plants maintained higher K+ : Na+ and Ca2+ : Na+ ratios than non‐AM plants under stressed and unstressed conditions. Salinity induced the accumulation of both proline and glycine betaine in AM and non‐AM plants. The quantum of increase in synthesis and accumulation of osmolytes was higher in mycorrhizal plants. Antioxidant enzyme activities increased significantly with salinity in both mycorrhizal and non‐mycorrhizal plants. In conclusion, pigeonpea plants responded to an increased ion influx in their cells by increasing the osmolyte synthesis and accumulation under salt stress, which further increased with AM inoculation and helped in maintaining the osmotic balance. Increase in the antioxidant enzyme activities in AM plants under salt stress could be involved in the beneficial effects of mycorrhizal colonization.  相似文献   

19.
Two kinds of barley genotypes with various water‐stress tolerances, tolerant Cam/B1 and sensitive Maresi, were subjected to 10‐day soil‐drought stress in seedling and flag leaf developmental phases. After this time, both genotypes regardless of the growth stage showed a decrease in quantum yield of PSII photochemistry (ΦPSII) upon stress treatment; however, this effect was stronger in the sensitive plants than in the tolerant ones. The drought stress in the flag leaf stage was associated with an increase in superoxide dismutase (SOD) level in both genotypes, whereas in seedlings, this effect was observed only for Maresi. The activity of other enzymes (catalase and peroxidase) was changed only in small degree. An increase in proline levels and activities of Δ1‐pyrroline‐5‐carboxylate synthetase (P5CS) and ornithine delta‐aminotransferase (OAT) were observed independently of genotype and the phase of plant development, whereas the activity pyruvate dehydrogenase (PDH) decreased in tolerant genotype. Moreover, changes in the concentration of monocarbohydrates (glucose and fructose) and dicarbohydrates (saccharose, raffinose and maltose) were found: in seedlings, the amount of all soluble sugars increased, while in flag leaves decreased. The drought treatment resulted in a drop in starch level in the tolerant genotype, but in the sensitive one, the content of this substance increased in both developmental stages. EPR studies allowed the determination of the amount and character of organic radicals present in leaves. In control conditions, the content of these radical species was higher in the sensitive genotype than in tolerant one and decreased upon water stress, with the exception of flag leaves of the sensitive plant. Simulation procedure revealed four types of signals in the EPR spectra. One of them was attributed to a chlorophyll a cation and decreased upon drought. The second, ascribed to semiquinone radicals, reflected the redox balance disturbed by water deficit. The two remaining signals were connected with carbon‐centred radicals situated in the carbohydrate matrix. Their number was correlated with starch concentration.  相似文献   

20.
Irrigation of wheat plants with seawater (10 and 25 %) led to significant increases in free and bound abscisic acid (ABA) in leaves, especially at 25 %. The relative water content (RWC) and water use efficiency (calculated from grain yield, WUEG, or from biomass yield, WUEB) of the seawater-irrigated plants were lower than those of the control. Grain pre-soaking in gibberellic acid (GA3), indole-3-acetic acid (IAA) or ABA reduced the levels of accumulated ABA (free and bound) produced by seawater irrigation. The stress imposed by seawater generally reduced yield and yield components of wheat plants and the effect was more pronounced at the higher level of seawater irrigation (25 %). Furthermore, seawater treatments decreased the carbohydrate content and increased the protein content of the developing grains. The effect of seawater treatments on ion concentrations in the developing grains was not consistent. The application of growth bioregulators appeared to mitigate the effect of seawater salinity stress on wheat productivity. GA3 was the most effective hormone in this regard. The economic yield (grain yield) had a strong positive correlation with RWC, WUEG, WUEB, plant height, shoot fresh and dry weight, grain number/main spike, kernel weight and harvest index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号