首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the effects of agricultural practices on weed seedbank dynamics is essential for predicting future problems in weed management. This article reports data relative to weed seedbank structure after 18 years of continuous application of conventional tillage (CT, based on mouldboard ploughing) or no tillage (NT) within three crop sequences (continuous wheat, WW; wheat–faba bean, WF; and wheat–berseem clover, WB). Tillage system did not affect the size of the total weed seedbank, but altered both its composition and the distribution of seeds within the soil profile. In particular, the adoption of CT favoured some species (mainly Polygonum aviculare), whereas the continuous use of NT favoured other species (Papaver rhoeas, Phalaris spp. and Lactuca serriola). The effects of tillage system on weed seedbank size and composition were less pronounced in the WB cropping system than in either the WW or WF. Compared with WF and WB, WW resulted in an increase in total weed seedbank density (about 16 000 seedlings m?2 in WW, compared with 10 000 and 6000 seedlings m?2 in WF and WB, respectively) and a reduction in weed diversity, with a strong increase in some species (e.g. Polygonum aviculare). Our results for the effect of NT application on weed seedbank size and composition suggest that farmers should only apply such a conservative technique within an appropriate crop sequence.  相似文献   

2.
Size and composition of the weed seedbank was assessed after 12 years of application of four tillage systems in two crop rotations. Mouldboard and chisel ploughing at 45 cm, minimum tillage at 15 cm and no tillage were compared in continuous winter wheat and a pigeon bean/winter wheat 2-year rotation. Weed control was based upon post-emergence herbicide application. Weed seedling emergence from soil samples taken at 0–15, 15–30 and 30–45 cm depths was assessed in a non-heated glasshouse for 12 months. The tillage system influenced weed seedbank size and composition to a much greater extent than crop rotation. Total weed seedling density was higher in no tillage, minimum tillage and chisel ploughing plots in the 0–15, 15–30 and 30–45 cm layers respectively. Density in the whole (0–45 cm) layer did not differ significantly among tillage systems. With no tillage, more than 60% of the total seedlings emerged from the surface layer, compared with an average 43% in the other tillage systems. Crop rotation did not influence either weed seedbank size or seedling distribution among soil layers, and only had a small influence on major species abundance. The weed seedbank was dominated (>66%) by Conyza canadensis (L.) Cronq. and Amaranthus retroflexus (L.), which thrived in chisel ploughing and no tillage respectively. Results suggested that crop rotation and substitution of mouldboard ploughing by non-inversion tillage (especially by minimum tillage) would not result in increased weed problems, whereas use of no tillage might increase weed infestations because of higher seedling recruitment from the topsoil.  相似文献   

3.
Sustainable cropping systems based on low inputs have received much attention, even if they may lead to the establishment of a competitive weed flora. This study, conducted from 2011 to 2014 in a Mediterranean environment, evaluated the changes in weed community composition in two cropping systems [conventional (CONV ) and organic (ORG )] with different soil tillage [inversion tillage (IT ) and non‐inversion tillage (NoIT )] in a wheat–tomato–chickpea rotation that began in 2000. The treatments were replicated three times according to a randomised complete block design. The organic system was managed according to EU regulations. Inversion tillage consisted of mouldboard ploughing to a depth of 30 cm, while NoIT consisted of subsoiling to a depth of 20 cm. Weed control was based on herbicide application in CONV and mechanical weeding in ORG . The organic non‐inversion system showed the highest weed biomass (134, 128 and 195 g dry matter (DM ) m?2 in wheat, tomato and chickpea, respectively) and weed density (66, 77 and 76 plants m?2 in wheat, tomato and chickpea, respectively), as well as community richness. However, ORG always increased weed diversity, even if annual dicotyledon species were abundant in ORG ‐IT and perennial dicotyledon species in ORG ‐NoIT . The conventional system enhanced the relative frequency of both annual (CONV ‐IT ) and perennial (CONV ‐NoIT ) grasses. There was a negative correlation between density of perennial weeds and crop yield (r 2 = 0.24, <  0.001). Therefore, in the Mediterranean environment, combining organic practices with non‐inversion tillage could lead to the establishment of perennial weeds that are difficult to control, thus requiring specific weed management practices.  相似文献   

4.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

5.
Apera spica‐venti is a winter annual grass and, increasingly, a severe weed problem in autumn‐sown crops. Non‐inversion tillage has become more common in Denmark in recent years, but may accentuate problems with A. spica‐venti. These problems may be avoided, if selected preventive and cultural weed management practices are adopted. To this end, we conducted a 4‐year field study investigating the effects of crop rotation, tillage method, location and limited herbicide input on A. spica‐venti population dynamics and crop yield. Additionally, detailed studies were performed on the fate of A. spica‐venti seeds when incorporated to different soil depths. The location with a lighter soil texture, cooler climate and higher rainfall favoured A. spica‐venti growth and consequently crop yield loss, especially in the crop sequence comprised only of autumn‐sown crops and with non‐inversion tine tillage. Incorporating A. spica‐venti seeds in the soil improved their survival, explaining the higher A. spica‐venti proliferation seen with tine tillage as opposed to direct drilling. The rotations including an even mixture of spring‐ and autumn‐sown crops did not lead to noteworthy changes in the A. spica‐venti population, irrespective of tillage method. Thus, in many regions, management of A. spica‐venti will require rotations that balance autumn‐ and spring‐sown crops.  相似文献   

6.
This study reviews 52 field experiments, mostly from the UK, studying the effects of cultivation techniques, sowing date, crop density and cultivar choice on Alopecurus myosuroides infestations in cereal crops. Where possible, a statistical meta‐analysis has been used to calculate average responses to the various cultural practices and to estimate their variability. In 25 experiments, mouldboard ploughing prior to sowing winter cereals reduced A. myosuroides populations by an average of 69%, compared with non‐inversion tillage. Delaying drilling from September to the end of October decreased weed plant densities by approximately 50%. Sowing wheat in spring achieved an 88% reduction in A. myosuroides plant densities compared with autumn sowing. Increasing winter wheat crop density above 100 plants m?2 had no effect on weed plant numbers, but reduced the number of heads m?2 by 15% for every additional increase in 100 crop plants, up to the highest density tested (350 wheat plants m?2). Choosing more competitive cultivars could decrease A. myosuroides heads m?2 by 22%. With all cultural practices, outcomes were highly variable and effects inconsistent. Farmers are more likely to adopt cultural measures and so reduce their reliance on herbicides, if there were better predictions of likely outcomes at the individual field level.  相似文献   

7.
Long‐term experiments were conducted in two winter barley fields in central Spain to determine the spatial stability of Avena sterilis ssp. ludoviciana populations under annual applications of low rates of imazamethabenz herbicide. Weed density was sampled every year (over 5 years in the first field and over 3 years in the second) on the same grid locations prior to herbicide application. Although weed patches were stable in their location, weed density decreased in most of the years. In the first field, the populations decreased exponentially over the 5‐year period. The rates of population decline were dependent on the initial density of the population, being higher for the central core of the patches and lower for the low‐density areas. Under the conditions present in this experiment, it was possible to reduce heavy weed patches (up to 1200 seedlings m?2) down to relatively safe levels (18 seedlings m?2) in a period of 3 years using a density‐specific control programme, applying low rates of herbicides when weed densities were below a given level (1000 seedlings m?2). However, under adverse environmental conditions, half rates of the herbicide failed to control the weed populations adequately. The stability of the location of patches of A. sterilis ssp. ludoviciana suggest that weed seedling distributions mapped in one year are good predictors of future seedling distributions. However, the actual densities established each year will depend on the control level achieved the previous year and the climatic conditions present during the establishment period.  相似文献   

8.
Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton–sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0–15 and 15–30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0–15 and 15–30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus‐galli seeds in the 15–30 cm soil horizon compared with the other tillage regimes. Total seedbank (0–30 cm) of P. oleracea was significantly reduced in cotton–sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus‐galli. Total seed densities of most annual broad‐leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus‐galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring‐germinating grass weed species, but also prevents establishment of summer‐germinating weed species by the early developing crop canopy.  相似文献   

9.
The development of integrated weed management strategies requires knowledge of mechanisms that influence compositional changes in weed flora. A 9-year study was initiated in 1988 at Delhi, Canada, on a loamy sand soil to evaluate the effect of tillage systems [conventional (CT) and no-till (NT)] and cover crops (only in NT) on weed density, species composition and associations, and crop yield in a winter wheat ( Triticum aestivum L.)/bean/winter wheat rotation. Three bean types: soyabean ( Glycine max L. Merr.), white bean ( Phaseolus vulgaris L.) and kidney bean ( P . vulgaris L.) were included. The NT system included variations: rye ( Secale cereale L.) or maize ( Zea mays L.) cover crop, volunteer wheat disked after harvest and wheat stubble. Data were collected in 1994, 1995 and 1996. Tillage systems, cover crops and crop type had differential effects on weed densities, species composition and associations. Weed densities were not affected by tillage or cover crops in wheat but, in the beans, densities were greater in the CT than in the NT systems. Various associations of weed species with tillage system, cover crop and crop type were observed. Crop yields were not affected by tillage type or cover crop, except that soyabean yields were highest in plots with cover crops.  相似文献   

10.
Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losses from weed seedbanks remain poorly understood. We conducted an experiment in Iowa, USA, to determine the fates of Setaria faberi and Abutilon theophrasti seeds in 2‐, 3‐ and 4‐year crop rotation systems when seed additions to the soil seedbank were restricted to a single pulse at the initiation of the study. Over the course of the experiment, seedlings were removed as they emerged and prevented from producing new seeds. After 41 months, seed population densities dropped >85% for S. faberi and >65% for A. theophrasti, but differences between rotation systems in the magnitude of seedbank reductions were not detected. Most of the reductions in seedbank densities took place from autumn through early spring in the first 5 months following seed deposition, before seedling emergence occurred, suggesting that seed predation and/or seed decay was important. For S. faberi, total cumulative seedling emergence and total seed mortality did not differ between rotation systems. In contrast, for A. theophrasti, seedling emergence was 71% lower and seed mortality was 83% greater in the 3‐ and 4‐year rotation systems than in the 2‐year system. Results of this study indicate that for certain weed species, such as A. theophrasti, crop rotation systems can strongly affect life‐history processes associated with soil seedbanks.  相似文献   

11.
Competition between winter-sown wheat and Viola arvensis Murray or Papaver rhoeas L. was studied in two experiments in two successive years. The effects of varying crop and weed density were modelled in terms of weed biomass over time, weed seed production and crop yield. Biomass model parameters, representing maximum weed biomass and intra- and interspecific competition, were obtained for different assessment dates, enabling biomass levels to be predicted during the two growing seasons. Weed biomass declined, and its maximum level was reached earlier, with increasing crop density. Intraspecific competition was higher in the absence than in the presence of crop, increasing with time and with weed density. Halving the wheat population increased June biomass of V. arvensis by 74% and of P. rhoeas by 63%. Crop yield losses with increasing weed density were greater with low than with medium and high crop populations. P. rhoeas was significantly more competitive than V. arvensis in both years. Weed biomass in 1989 responded more to reductions in crop density following the milder winter of 1988/89 than in the previous year; however crop yields were less affected in 1989 due to summer drought, restricting late weed growth and competition. Weed seed production was related to weed biomass; the progressive lowering of crop density increased seed production, and both species were very prolific in the absence of crop. By combining models, seed production could be derived for a given competitive effect on the crop. Threshold weed populations, based on low weed levels that are not economic to control, could then be equated with the accompanying weed seed production.  相似文献   

12.
Quantifying the impacts of climate change on weed populations requires an understanding of the relative contributions of endogenous and exogenous factors on their numerical fluctuations. Here, we have used long‐term data (26 years) of seven weed species growing in a cereal–legume rotation from a locality in central Spain to determine the importance of endogenous (density dependence) and exogenous (tillage system, crop rotation, temperature and precipitation) factors. Density dependence was the main driver of the population dynamics studied, and it was exhibited more frequently under zero tillage (86% of the species) than under minimum tillage (57% of the species). Our results confirmed previous findings and provided stronger support for density dependence under zero tillage than under minimum tillage. Under the latter, temperature negatively affected the population growth rate of Descurainia sophia and positively Atriplex patula. We found no effect of either precipitation or crop rotation on population dynamics. Our findings could underpin an awareness campaign aimed at farmers to prevent them from drawing unwarranted conclusions regarding the efficacy of the particular control method used in a given year.  相似文献   

13.
Soil weed seed bank is an important factor determining above-ground floristic composition and weed density in agricultural systems. The quantitative and qualitative measures of weed seed bank can help growers to predict the extent to which they are facing weed problems. Along with tillage, crop residues can affect the fate of weeds in the upcoming crops. To investigate such effects, we compared the effects of tillage systems [conventional tillage (CT), reduced tillage (RT), and no tillage (NT)], wheat residue retention, and nitrogen (N) rates (0, 69, 138, and 207 kg N ha−1) on depth-related characteristics of the weed seed bank under a sweet corn-wheat sequence during 2014–2015 growing seasons in Shiraz, Iran. Soil bank was not affected by tillage systems but tended to be slightly higher under RT. The highest (898 seeds m−2) and lowest (322 seeds m−2) weed population at 0–10 cm depth were found when 138 kg N ha−1 in 2015 and 207 kg N ha−1 in 2014 were applied. Species richness and diversity were higher under NT and RT practices at the top layer, but CT system was more diversified at deeper depths. They were higher when crop residues were retained as well. Barnyard grass (Echinochloa crus-galli [L.] Beauv), common lambsquarter (Chenopodium album L.), common purslane (Portulaca oleracea L.), field bindweed (Convolvulus arvensis L.), flixweed (Descoreinia sofia [L.] Webb. & Berth.), henbit (Lamium amplexicaule L.), pigweeds (Amaranthus spp.), and stinking goosefoot (Chenopodium vulvaria L.) were the most common weeds found in all tillage systems and soil depths. Grasses were relatively lower than broadleaves regardless of treatments. Weed seed bank was mostly affected by weather conditions than treatments in this short-term experiment.  相似文献   

14.
FELDMAN  ALZUGARAY  TORRES  LEWIS 《Weed Research》1998,38(1):35-45
The effects of tillage systems (mouldboard plough, chisel, disk and non-tillage, over 3 years) and gap openings during August and October of 0, 0.30 m × 0.30 m and 0.45 m × 0.45 m on the weed community were investigated in a wheat (Triticumaestivum L.) crop. Weed flora composition and species abundance were recorded in August, September and November and the data analysed with MULVA programs and non-parametric tests. The tillage system was more important than the timing or gap size on the weed floristic composition, and the changes in weed communities were evident within a 3-year period in spite of herbicide use. Less disturbing tillage systems (non-tillage and chisel plough) allowed the build-up of a more diverse community, whereas the most disturbing one (mouldboard plough) prevented high diversity in the weed community.  相似文献   

15.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

16.
Several Fusarium species cause harmful cereal diseases, such as fusarium head blight and crown rot, which, during pathogenesis, may result in significant grain yield and quality losses. Several species of agricultural weed are believed to be alternative and reservoir hosts for Fusarium spp.; however, studies have not comprehensively evaluated those weed species in cropping systems that may harbour these fungi. The objective of this study was to determine weed species in cereal‐based crop rotations that are asymptomatically colonised by Fusarium spp. We sampled all species of weed present in fields that were managed under six different crop sequences in 2015 and 2016. The study yielded 2326 single‐spore isolates of Fusarium spp. derived from various organs of asymptomatic weeds. Isolates were identified morphologically and then confirmed using PCR with species‐specific primers and/or sequencing of tef1α gene fragments. Isolates of nine Fusarium spp. were obtained from 689 of the 744 individuals collected that represented 56 weed species. Each weed species harboured at least one species of Fusarium, and >80% were colonised by 3–9 Fusarium spp. In total, we identified 27 dicotyledonous weed species that were previously undocumented as Fusarium hosts and 251 new weed × Fusarium species combinations were revealed. Consequently, there is a greater risk of negative Fusarium impacts on cereal crops than was previously thought. We suggest effective weed management and inversion soil tillage may help mitigate these impacts.  相似文献   

17.
Weed flora in a crop rotation of soybean, sugar beet, and spring wheat were studied under combinations of conventional and reduced tillage, biocide application, and chemical fertilization to investigate whether any combination of conservational practices offers the potential to increase weed community diversity while maintaining weed biomass at an acceptable level. Weed density increased under reduced biocide application. Weed density and size increased under manure compost application (with reduced chemical fertilization) because of weed seed introduction. Weed emergence from seeds dispersed in the previous year was greater under reduced tillage. Two-year individuals increased under a combination of reduced tillage, reduced biocide application and manure compost application. These increases in weed population density and size under conservational practices were yet not consistent; rather, they showed an annually fluctuating trend. In terms of weed diversity, species richness and Shannon's diversity index were higher under manure application because of the introduction of new species and probably as a result of suppression of weed growth and reproduction, which can reduce the chance of dominance by certain species. When combined with manure application, reduced tillage may offer the potential for increasing diversity by reducing the competitiveness of dominant species and facilitating establishment of new or minor species.  相似文献   

18.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

19.
The basic mechanism of soil inversion tillage for control of annual weeds is based on the vertical translocation of weed seeds from the soil surface to deeper soil layers. Buried weed seeds either remain dormant in the soil seedbank and are exposed to biological and chemical decay mechanisms, or they germinate but the seedlings cannot reach the soil surface (fatal germination). However, depending on the seed biology of the respective target species, frequent inversion tillage can lead to a build-up of the soil seedbank. For soil seedbank depletion based on available knowledge of the biology of Alopecurus myosuroides seeds, soil inversion tillage is suggested to be reduced to every third or fourth year with reduced or even no-tillage (direct seeding) in between (rotational inversion tillage systems). Including spring crops in the crop rotation could further help dampening the population growth and hence the seed return into the seedbank. This study investigated the effect of rotational inversion tillage in combination with reduced tillage or direct seeding on the soil seedbank and population development of A. myosuroides. In a long-term field trial, set up in 2012, these tillage strategies were compared with continuous inversion tillage in a 3-year crop rotation with two consecutive years of winter wheat (Triticum aestivum) followed by spring barley (Hordeum vulgare). The results showed a significant decline in the soil seedbank following the spring crop, irrespective of the tillage system. The continuous inversion tillage system and inversion tillage before spring cropping with reduced tillage (shallow tillage with a disc harrow) before winter wheat both led to accumulation of seeds in the soil seedbank. In contrast, inversion tillage before spring cropping with direct seeding of winter wheat depleted the soil seedbank significantly after only one crop rotation. Although only covering one intensively studied field site, these findings highlight the need for diversified cropping systems and indicate potential avenues for reducing soil tillage while controlling economically important weeds.  相似文献   

20.
Field experiments were conducted to characterize the demography of Abutilon theophrasti and Setaria faberi in a conventionally managed 2‐year (maize/soya bean) rotation, and in 3‐year (maize/soya bean/triticale + red clover) and 4‐year (maize/soya bean/triticale + lucerne/lucerne) rotations managed with 72% and 79% lower herbicide inputs respectively. Rates of weed seedling recruitment, seedling survival and adult plant fecundity were determined for populations in each phase of each rotation and used to calculate annual rates of weed population change, Δ. In both years of the study, Δ for A. theophrasti populations declined or remained stable in all three rotation systems. Despite greater rates of seedling survival and fecundity in maize and soya bean in the 3‐ and 4‐year rotations, increases in Δ for A. theophrasti populations were prevented in these systems because of low fecundity in triticale and low seedling survival and fecundity in lucerne. For Setaria faberi populations, Δ remained stable in the 2‐year rotation, increased in the 3‐year rotation in both years, and increased in the 4‐year rotation in 1 year. The results of this study indicate that when herbicide use is reduced, rotations that include triticale and lucerne can facilitate the suppression of A. theophrasti. Rotations that include lucerne can contribute to restraining S. faberi population growth, given adequate levels of seedling mortality in this crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号