首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

2.
Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losses from weed seedbanks remain poorly understood. We conducted an experiment in Iowa, USA, to determine the fates of Setaria faberi and Abutilon theophrasti seeds in 2‐, 3‐ and 4‐year crop rotation systems when seed additions to the soil seedbank were restricted to a single pulse at the initiation of the study. Over the course of the experiment, seedlings were removed as they emerged and prevented from producing new seeds. After 41 months, seed population densities dropped >85% for S. faberi and >65% for A. theophrasti, but differences between rotation systems in the magnitude of seedbank reductions were not detected. Most of the reductions in seedbank densities took place from autumn through early spring in the first 5 months following seed deposition, before seedling emergence occurred, suggesting that seed predation and/or seed decay was important. For S. faberi, total cumulative seedling emergence and total seed mortality did not differ between rotation systems. In contrast, for A. theophrasti, seedling emergence was 71% lower and seed mortality was 83% greater in the 3‐ and 4‐year rotation systems than in the 2‐year system. Results of this study indicate that for certain weed species, such as A. theophrasti, crop rotation systems can strongly affect life‐history processes associated with soil seedbanks.  相似文献   

3.
Soil nitrogen (N) is considered an important driver of crop‐weed interactions, yet the mechanisms involved have been only partially explored, especially with respect to early‐season growth, when competitive hierarchies are formed. This study characterises the effects of different N levels on biomass accumulation and plant morphology for maize (Zea mays), and four important weed species (Amaranthus retroflexus, Abutilon theophrasti, Setaria faberi, and Chenopodium album). Under glasshouse conditions, plants were grown in separate pots and irrigated with nutrient solution at four N concentrations (0.2, 0.5, 2, 5 μm L−1) until 57 days after emergence. Except for S. faberi, which was unresponsive to N, the relative biomass growth rates (RGR) of maize and the broad‐leaved weeds were positively and similarly affected by increasing nitrogen. At all N levels, maize had a height advantage by virtue of its larger seed size, which conferred early growth benefits independent of RGR. At low N, biomass growth was instrumental to S. faberi’s improved competitive position, whereas height development per unit biomass improved the competitive position of A. theophrasti, C. album and A. retroflexus. The approach presented could be applied to other crop‐weed systems to evaluate environmental impacts on competitive outcomes.  相似文献   

4.
Tillage and maize (Zea mays L.) residues at up to four times the base level had variable effects on the emergence of four annual weed species in the field. Environmental conditions varied during the three years of the research and interacted with residue and tillage to govern seedling emergence. When tillage affected Setaria faberi Herrm., emergence was greater in untillcd than tilled plots. The effect of residues varied among years. Abutilon theophrasti Medik, emergence from tilled soil was greater than from untilled soil in two of three years. Maize residue at two or four times the base levei reduced emergence. Amaranthus retroflexus L. emergence was often greater from untilled than tilled soil. The effect of maize residues on this species was dependent on tillage and precipitation. Chenopodium album L. emergence was affected by tillage and residues but differences over the three years were inconsistent. Results of this research indicate that tillage and residues interact with weed species, precipitation and other factors to regulate seedling emergence. The reduced soil disturbance and minimal weed seed burial associated with the elimination of tillage appear to have a greater impact on weed population dynamics than surface residues in non-tillage maize production systems.  相似文献   

5.
Tepraloxydim [(EZ)‐(RS)‐2‐{1‐[(2E)‐3‐chloroallyloxyimino]propyl}‐3‐hydroxy‐5‐perhydropyran‐4‐ylcyclohex‐2‐en‐1‐one] showed high activity against annual bluegrass (Poa annua L.), which is relatively tolerant to sethoxydim [(±)‐2‐(1‐ethoxyiminobutyl)‐5‐[2‐(ethylthio)propyl]‐3‐hydroxycyclohex‐2‐en‐1‐one]. Absorption and translocation rates of tepraloxydim and sethoxydim were higher in P. annua than in Setaria faberi, but the absorption and translocation patterns of tepraloxydim in the two plants were similar to those of sethoxydim. Metabolic rates of tepraloxydim and sethoxydim in P. annua and S. faberi were found to be similar. The concentration for 50% inhibition (I50) of acetyl‐coenzyme A carboxylase (ACCase) with tepraloxydim was approximately 3 × 10?6 mol L?1 for P. annua and 7 × 10?7 mol L?1 for S. faberi. For sethoxydim, the I50 was found to be 2 × 10?6 mol L?1 with the enzyme of S. faberi, while sethoxydim showed a slight effect on ACCase from P. annua activity, even at 10?4 mol L?1. The strong inhibition of ACCase with tepraloxydim is considered to be the major factor contributing to the high herbicidal activity against P. annua. Measuring the whole plant growth response, the ratio of the tepraloxydim I50 dose of P. annua to that of S. faberi (P/S) was found to be 2.4, while the P/S ratio of sethoxydim and a tepraloxydim analog with a propyl chain at R2 were 56.3 and 73.3, respectively. The herbicidal activity against P. annua was remarkably influenced by the length of the R2 alkyl chain, while the effect on S. faberi was not affected. Acetyl‐coenzyme A carboxylase from P. annua also exhibited a higher resistance to the tepraloxydim analog with a propyl chain than to tepraloxydim. These results suggest that a binding site structure of cyclohexane‐1,3‐diones in the ACCase differs between P. annua and S. faberi.  相似文献   

6.
PINO  SANS  MASALLES 《Weed Research》1998,38(1):25-33
The population dynamics of Rumex obtusifolius L. was analysed in a lucerne:winter cereal crop rotation by means of a matrix population model that takes into consideration two crop rotation periods: the lucerne (Medicago sativa L.) cropping period and the cereal cropping period. Several transition matrices based on life-cycle stages were calculated for each cropping period using experimental data and were used in the construction of a model that analyses the population dynamics of R. obtusifolius under different harvest dates and lengths of lucerne cropping periods. Model projections showed that populations of R. obtusifolius increased during the lucerne cropping period regardless of harvest date and decreased during the cereal cropping period. Under a late harvest date, populations decreased at each crop rotation when lucerne was grown for 3 years, remained close to the equilibrium when lucerne was left to grow for 5 years, and increased for longer lucerne cropping periods. In contrast, populations of R. obtusifolius decreased even with a lucerne cropping period of 9 years under an early harvest date. The significance of these results in relation to the biology and the non-chemical control of the species is discussed.  相似文献   

7.
Glutathione transferases (GSTs) catalysing the conjugation of 1-chloro-2,4-dinitrobenzene, the chloro-s-triazine herbicide atrazine, the chloroacetanilide herbicides metolachlor and alachlor and the diphenyl ether herbicide fluorodifen have been identified in suspension-cultured cells derived from the grass weed giant foxtail (Setaria faberi Herrm.). In contrast to suspension-cultured cells of maize, where atrazine-conjugating GSTs are lost during de-differentiation, the GSTs active toward this herbicide in S. faberi plants were also expressed in cultures, suggesting that these isoenzymes are subject to different regulation in the crop and weed. As a result, glutathione conjugation was the major route of atrazine metabolism in S. faberi cultures. Activities of these GSTs were maximal three days after sub-culturing when the cells were dividing most actively, when they were determined to be in the order CDNB>alachlor>metolachlor= fluorodifen>atrazine. This indicated that GSTs which are enhanced during cell division can metabolise herbicides. On the basis of activity per mg protein, GST activities in the cultures were between 20 and 60-fold higher than those determined in the foliage of S. faberi seedlings. The GSTs with activity towards CDNB were resolved into three peaks following anion-exchange chromatography at pH 7·8 using Q-Sepharose. Peak 1 GSTs were not retained, while peak 2 and peak 3 were sequentially resolved with an increasing concentration of salt. Peak 1 GSTs showed activity toward metolachlor and atrazine but showed little activity toward fluorodifen. Peak 2 and peak 3 GSTs were active toward atrazine and metolachlor, with peak 3 being particularly associated with activity toward fluorodifen. The GSTs in these peaks were then further purified using S-hexyl-glutathione-agarose affinity chromatography. In each case, the affinity-bound fraction of the GSTs consisted of 28 kDa and 26 kDa polypeptides, suggesting that the GST isoenzymes in S. faberi cultures are composed of related subunits. Our results demonstrate that the GST isoenzymes involved in herbicide metabolism in suspension cultures of a grass weed show a similar level of complexity to that determined in maize cell cultures. © 1998 SCI  相似文献   

8.
Setaria faberi and Digitaria ciliaris are summer annual grass weeds that constitute an orchard weed community in Japan. Species dominance in the weed community shifts from S. faberi to D. ciliaris with an emergence delay. The change in species dominance is assumed to be a clue to how weeds dominate or coexist in shaping the community. Population dynamics and seasonal variations in emergence and competitive ability were studied from this viewpoint. Field monitoring and pot experiments exhibited that the emergence period of the two species overlapped extensively from April to June. The emergence of S. faberi began 2 weeks earlier than that of D. ciliaris in April and declined in June as a result of the induction of secondary dormancy. The plant density of D. ciliaris was high during the whole period. The great mortality of the species was replenished with its great natality. The replacement series experiments revealed that S. faberi that had been planted in April was a better competitor than D. ciliaris, but it lost its competitive superiority in the June plantings, when D. ciliaris became a superior competitor to S. faberi. The level of seed output was greater for D. ciliaris, even when it was an inferior competitor. Therefore, the shift in species dominance appeared to be attributed to a change in competitive superiority between the two species. The early emergence of S. faberi and the high plant density of D. ciliaris might accelerate competitive exclusion. The two species coexist when they are equivalent in competitiveness.  相似文献   

9.
To improve understanding of over-winter weed seed predation in arable fields, we used data from winter exclosure trials to determine the amount of predation and the influence of crop habitats on predation of Abutilon theophrasti and Setaria faberi seed in 2-year (maize/soyabean) and 4-year (maize/soyabean/small grain+lucerne/lucerne) crop rotation systems between 2005 and 2008. Crop habitat influenced seed predation, and had similar impacts on the two weed species. Mean A. theophrasti predation ranged from 31% in the 2-year soyabean habitat to 99% in the 4-year lucerne habitat. Mean S. faberi predation ranged from 31% in the 2-year soyabean habitat to 97% in the 4-year lucerne habitat. Results suggest that a combination or interaction of cover and substrate may have affected crop habitat preference by seed predators. Future research should further examine the influence of physical habitat on seed predation to determine characteristics of cropping systems that encourage predation, particularly during over-winter periods, so as to routinely incorporate seed predators into long-term weed management strategies.  相似文献   

10.
G. ZANIN  M. SATTIN 《Weed Research》1988,28(5):347-352
Four tests were carried out in 1980 and 1981 to determine: (a) the economic threshold density of Abutilon theophrasti Medicus (velvetleaf) in maize, and (b) seed production with varying densities of infestation, both in the presence and in the absence of maize. The infestation was artificially created, and the density of the weed ranged from 0 to 80 plants m?2. The economic threshold, calculated using the Cousens (1987) model, varied between 0?3 plants m?2 and 2?4 plants m?2, depending on the variables considered. The presence of maize reduced the seed-rain of A. theophrasti by 50%. This seed-rain reached its maximum level at 20–30 plants m?2 in maize, and at 30–35 plants m?2 in weed monoculture. However, with only 4–5 plants m?2 in competition with maize, A. theophrasti produced 8–10 thousand seeds m?2. The usefulness of threshold density in weed management is debatable when one considers the ecological characteristics of the A. theophrasti seed, and the great capacity of seed production of this weed.  相似文献   

11.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Most of all, it allows a potential reduction in herbicide use, when post‐emergence herbicides are only applied to field sections with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site‐specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including online weed detection using digital image analysis, computer‐based decision making and global positioning systems (GPS)‐controlled patch spraying. In a 4‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 60% for herbicides against broad‐leaved weeds and 90% for grass weed herbicides. In sugarbeet and maize, average savings for grass weed herbicides were 78% in maize and 36% in sugarbeet. For herbicides against broad‐leaved weeds, 11% were saved in maize and 41% in sugarbeet.  相似文献   

12.
Light signalling is an important mechanism of plant competition during the early stages of seedling development. Far‐red‐enriched (FR‐E) light reflected from neighbouring weeds has been shown to induce the shade avoidance response leading to changes in plant morphology and increased variability in yields. In this study, the morphological and molecular changes occurring at the hypocotyl arch and primary leaf stage of soya bean development were investigated in response to FR‐E light reflected from neighbouring weeds. A reduction in the root/shoot was identified at the hypocotyl arch stage, and an increase in height was detected at the unifoliate stage of soya bean seedlings. In addition, FR‐E light induced a change in the expression profile of reactive oxygen species (ROS)‐scavenging genes. Early in seedling development, ROS‐scavenging genes were upregulated. However, this trend was reversed at later stages of development with downregulation of several ROS‐scavenging genes. These results demonstrated the rapidity of induction of the shade avoidance response and that gene expression in soya bean seedlings was dependent upon developmental stage and tissue type sampled.  相似文献   

13.
Using extracts from suspension-cultured cells of soybean (Glycine max cv. Mandarin) as a source of active enzymes, the activities of glutathione transferases (GSTs) catalysing the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) and selective herbicides were determined to be in the order CDNB≫ fomesafen>metolachlor=acifluorfen>chlorimuron-ethyl. GST activities showed a thiol dependence in a substrate-specific manner. Thus, GST activities toward acifluorfen and fomesafen were greater when homoglutathione (hGSH), the endogenously occurring thiol in soybean, was used as the co-substrate rather than glutathione (GSH). Compared with GSH, hGSH addition either reduced or had no effect on GST activities toward other substrates. In the absence of enzyme, the rates of hGSH conjugation with acifluorfen, chlorimuron-ethyl and fomesafen were negligible, suggesting that rapid hGSH conjugation in soybean must be catalysed by GSTs. GST activities were subsequently determined in 14-day-old plants of soybean and a number of annual grass and broadleaf weeds. GST activities of the plants were then related to observed sensitivities to post-emergence applications of the four herbicides. When enzyme activity was expressed on a mg-1 protein basis, all grass weeds and Abutilon theophrasticontained considerably higher GST activity toward CDNB than soybean. With fomesafen as the substrate, GST activities were determined to be in the order soybean≫Echinochloa crus-galli>Digitaria sanguinalis>Sorghum halepense=Setaria faberi with none of the broadleaf weeds showing any activity. This order related well to the observed selectivity of fomesafen, with the exception of A. theophrasti, which was partially tolerant to the herbicide. Using metolachlor as the substrate the order of the GST activities was soybean>A. theophrastiS. halepense>Amaranthus retroflexus>Ipomoea hederacea, with the remaining species showing no activity. GST activities toward metolachlor correlated well with the selectivity of the herbicide toward the broadleaf weeds but not toward the grass weeds. Acifluorfen and chlorimuron-ethyl were selectively active on these species, but GST activities toward these herbicides could not be detected in crude extracts from whole plants. © 1997 SCI  相似文献   

14.
Field tests of a prototype microwave‐based weed killer machine were conducted on Abutilon theophrasti, Panicum miliaceum, lucerne and oilseed rape pure stands. The approach can be considered a thermal weed control method, the microwave radiation causing dielectric heating of plant tissue water that eventually kills the plant. The method could overcome the limitations of other thermal methods, such as fire risk with flaming or the heavy loads required for hot water treatments. Species were effectively controlled by microwave irradiation, but their sensitivity and the evolution of damage symptoms over time differed. Lucerne showed no sigmoidal response and was the least affected by the treatment, while a log‐logistic curve expressed the dose–response relationships of the other species quite well. The estimated microwave dose for a 90% dry weight reduction ranged from 1015 kJ m?2 in A. theophrasti to 3433 kJ m?2 in P. miliaceum. Energy cost evaluation indicated that increased efficiency is required for this technique to compete with other thermal methods. Microwave efficiency could be increased by a flux configuration that minimizes soil penetration and maximizes absorption by plants, which, in turn, depends on plant growth form.  相似文献   

15.
L Ziska 《Weed Research》2013,53(2):140-145
Soyabean (Glycine max) was grown at ambient and projected levels of atmospheric carbon dioxide (+250 μmol mol?1 above ambient) over two field seasons with and without the presence of a weed, Abutilon theophrasti, to quantify the potential effect of rising atmospheric carbon dioxide concentration on weed–crop interactions and potential yield loss in soyabean. Under weed‐free conditions, elevated CO2 resulted in stimulations in soyabean seed yield and associated components, including pod number. At an approximate density of 6 plants m?2, A. theophrasti competition resulted in a significant reduction (?40%) in soyabean seed yield. Although differences in seed yield reduction by A. theophrasti were observed as a function of year, the relative decrease in seed yield with A. theophrasti biomass did not differ in response to CO2. Although careful weed management will be necessary if CO2‐induced increases in seed yield for soyabean are to be achieved, these data suggest that soyabean seed yield may be more resilient in competition with A. theophrasti as a function of rising atmospheric levels of carbon dioxide.  相似文献   

16.
Echinochloa crus‐galli is an important maize weed with significant variation in herbicide sensitivity. This differential response may reflect differences in selection pressure caused by years of cropping system‐related herbicide usage. The herbicide sensitivity of E. crus‐galli populations from three divergent cropping systems was evaluated in dose–response pot experiments. Populations were collected from sandy fields with (i) a long‐term organic cropping system, (ii) a conventional cropping system with maize in the crop rotation or (iii) a conventional cropping system with long‐term monocropping of maize. Each cropping system was represented by six E. crus‐galli populations. The effectiveness of three foliar‐applied maize herbicides (nicosulfuron, cycloxydim and topramezone) and two soil‐applied maize herbicides (S‐metolachlor and dimethenamid‐P) was tested at three doses and two runs. Foliar‐applied herbicides were applied at the three true leaves stage. Soil‐applied herbicides were applied immediately after sowing. The foliage dry weight per pot was determined 4 weeks after treatment. Plant responses were expressed as biomass reduction. Herbicide sensitivity was consistently lowest for populations from maize monocropping systems. Compared with populations from organic cropping systems, populations from monocropping systems showed 6.9%, 9.8% and 29.3% lower sensitivity to cycloxydim, topramezone and nicosulfuron respectively. Populations from the conventional crop rotation system showed intermediate sensitivity levels, which did not significantly differ from sensitivity levels of populations from the other cropping systems. Sensitivity to dimethenamid‐P and S‐metolachlor was not affected by cropping system. Environmental conditions influenced herbicidal response . This study indicated that integrated weed management may be necessary to preserve herbicide efficacy over the long term.  相似文献   

17.
Variations in climate are widely recognized as central factors governing the competitive balance in mixed‐species plant communities. In agricultural systems, highly variable patterns of crop yield reduction as a function of weed density have been documented across sites and among years at the same site for several crop–weed combinations. This variation is typically attributed to contrasting environmental conditions. Despite broad acknowledgement of their importance, experimental and temporal limitations have constrained the investigation and systematic understanding of environmental controls on the dynamics of competition. For several well‐studied crop–weed associations, aggregating historical data from similar competition experiments provides an opportunity to explore interference relationships over an array of conditions. In this study, 19 site‐years of maize –Abutilon theophrasti (velvetleaf) data were compiled and the weather characterized (i.e. average ambient temperature and moisture regime) for discrete portions of each growing season. These features were then related to patterns of maize yield loss from A. theophrasti interference at high weed densities. Results of this analysis suggest that temperatures following establishment, together with the presence or absence of water stress during the maize crop's exponential growth phase, account for over 60% of the observed variation in relative yield loss.  相似文献   

18.
Compositae plants contain biologically active substances that are allelopathic to weed species. Aqueous extracts from leaves of 16 plants were bioassayed against lucerne (Medicago sativa) to determine their allelopathic effects, and the results showed the highest inhibition for the extracts from Lactuca sativa, Xanthium occidentale and Cirsium japonicum. The extracts applied to filter paper in Petri‐dish bioassay tests significantly inhibited root growth of lucerne. Extracts of 40 g dry tissue L?1 from L. sativa, X. occidentale and C. japonicum were completely inhibitory to lucerne root growth, but hypocotyl growth of lucerne was less sensitive. Although allelopathic effects of methanol extracts were much less than those of coumarin or alachlor, early seedling growth of both lucerne and Echinochloa crus‐galli was significantly reduced by methanol extracts. Mixture of L. sativa, X. occidentale and C. japonicum extracts had more inhibitory effects on test plants than each single extract treatment. By means of high‐performance liquid chromatography, responsible causative allelopathic substances present in L. sativa, X. occidentale and C. japonicum were isolated from various fractions and identified as coumarin, trans‐cinnamic acid, o‐coumaric acid and p‐coumaric acid. These results suggest that some Compositae have various herbicidal potentials, and that their activities, types and amount of causative compounds differ, depending on the plant species.  相似文献   

19.
Root rots (RR) are the main cause of declining bean (Phaseolus vulgaris) production in southwestern Uganda. Here, beans are mainly intercropped/rotated with maize (Zea mays), sorghum (Sorghum bicolor), sweet potato (Ipomoea batatas), potatoes (Solanum tuberosum) and garden peas (Pisum sativum). These crops also suffer from RR and bean RR pathogens have been isolated from some of these crops. This study aimed to determine the extent of RR on maize, sorghum and peas, and their potential to contribute to the survival of bean RR pathogens. Therefore, experiments were carried out in bean RR‐infested farmers’ fields as well as soils inoculated with bean RR pathogens (Pythium spp. and Fusarium spp.) under screen house conditions and a susceptible bean cultivar served as a control. High RR incidence/severity scores were recorded in beans and sorghum in both farmers’ fields and screen house experiments. The high field RR incidence/severity in sorghum correlated with the screen house scores. This study shows that RR is also a problem to other crops, especially sorghum, warranting attention. The findings also imply that sorghum plays a potential role as an alternate host to bean RR pathogens, increasing inoculum density of bean RR pathogens and potentially negatively impacting the bean RR problem. Intercropping or rotating beans with sorghum in this region is not recommended. However, maize was RR‐resistant and therefore appropriate as an intercrop/rotational crop to beans in the system. A holistic rather than commodity approach is recommended for managing RR in this cropping system.  相似文献   

20.
Good weed management relies on the proper timing of weed control practices in relation to weed emergence dynamics. Therefore, the development of models that predict the timing of emergence may help provide growers with tools to make better weed management decisions. The aim of this study was to validate and compare two previously published predictive empirical thermal time models of the emergence of Abutilon theophrasti growing in maize with data sets from the USA and Europe, and test the hypothesis that a robust and general weed emergence model can be developed for this species. Previously developed Weibull and Logistic models were validated against new data sets collected from 11 site-years, using four measures of validation. Our results indicated that predictions made with the Weibull model were more reliable than those made with the Logistic model. However, Weibull model results still contained appreciable biases that prevent its use as a general model of A. theophrasti emergence. Our findings highlight the need to develop more accurate models if the ultimate goal is to make more precise predictions of weed seedling emergence globally to provide growers with universally consistent tools to make better weed management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号