首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 955 毫秒
1.
2.
Wu  Hao  Zhang  Jianlong  He  Yongxing  Zhou  Junfang  Yan  Jizhou  Jiang  Min 《International Aquatic Research》2017,9(3):195-201
International Aquatic Research - White spot syndrome virus (WSSV) cause great harm in shrimp aquaculture. To understand the impact of viral infection on the shrimp metabolism, we monitored the...  相似文献   

3.
Determination of differentially expressed protein profile is necessary to understand the host response to viral infection. Proteomics can be applied as a tool to examine white shrimp Litopenaeus vannamei molecular responses against white spot syndrome virus (WSSV) infection, thus enabling development of effective strategies to reduce their impact on farms. In the present study, specific pathogen-free shrimp was tested against WSSV infection under several time intervals. Shrimps were submitted to a viral load of with 5.5 × 106 viral copies in 100 μL/shrimp. The monitoring of infection was performed in intervals of 6, 12, 24, 48 and 72 h after infection. The analysis was realized using 2-DE, and differentially expressed proteins were identified by MALDI-TOF mass spectrometry (MS) peptide mass fingerprint (PMF). Between the differentially expressed proteins found in the infected animals, the most important were identified as caspase-2, ubiquitin and F1-ATP synthase. They are interesting candidates for biomarkers because could be related to the beginning of apoptosis process. The differentially expressed protein profile creates a new paradigm in the analysis of L. vannamei shrimp molecular response to WSSV infection and in virus–host relationship. Furthermore, it proposes potential biomarkers that allow strategies both selecting less susceptible individuals and reducing the impact of viruses on farms.  相似文献   

4.
传染性皮下及造血组织坏死病毒致病性研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
传染性皮下及造血组织坏死病毒(IHHNV)是一种分布较广、危害较大的对虾病毒,已被世界动物卫生组织(OIE)列为须向其申报的甲壳类重要疫病病原。IHHNV在我国已形成了一定的流行趋势,目前仍是严重危害我国养殖虾类的重要病毒。本文从IHHNV的流行地区及危害、宿主、致病类型、对宿主不同年龄阶段的致病性差异、与白斑综合征病毒(WSSV)的干扰作用、感染机制和致病机理方面,综述了与IHHNV致病性相关的研究进展,以期为进一步深入研究IHHNV防控提供参考资料。  相似文献   

5.
White spot syndrome virus (WSSV) is the most severe viral pathogen to the crustacean aquaculture industry worldwide. Recently, serious WSSV outbreaks caused catastrophic losses in the Chinese mitten crab, Eriocheir sinensis in Jiangsu Province, Eastern China. However, to date, little is known about its infection mechanism in the new natural host. This study aimed to reveal the temporal and spatial dynamics of WSSV in E. sinensis. The slow viral growth in the early stage of infection was the light infection stage (from 0 to 24 hpi), and the exponential growth stage that followed was the logarithmic phase (from 24 to 72 hpi). The viral growth curve ended with the plateau phase (from 72 to 144 hpi) which demonstrated a consistent high level of viral load and accompanied heavy crab mortality. The viral load increased as time progressed with similar growth curves, however, at different degrees. The viral copy numbers of tissues at different time intervals, analysed using one‐way analysis of variance (anova ), showed significant differences between tissues at all time points (< 0.05). Infection was detectable as early as 6 hpi in all the tissues screened. The severity of infection was found to be maximum in gill and pleopods, which could be recommended for diagnostic testing. This study might provide important data to analyse theoretically the interaction between WSSV and the host.  相似文献   

6.
White spot syndrome virus (WSSV) isolated from Penaeus monodon was found to be highly infective for the western Mediterranean shrimp, Palaemon sp. Using polymerase chain reaction (PCR), it was demonstrated that such shrimp are not naturally carriers of WSSV. Following challenge with virus, mortality reached 100% 3.5-4 days after injection at 22 degrees C. Incubation of infected shrimp at 10 degrees C totally suppressed the mortality which rapidly developed when shrimp were returned to 18 or 22 degrees C. Preincubation of WSSV with mature synthetic mytilin significantly reduced shrimp mortality with a 50% efficient dose of about 5 microM. Survival of shrimp was not due to the development of an active mechanism of defence as re-injection of WSSV produced the same mortality pattern. Mortality was probably due to WSSV replication as dot blot failed to detect viral DNA in the injection sample but was positive 1 day post-injection. Protection by mytilin was by interaction at the virus level, preventing replication as no WSSV nucleic acid was detected by PCR even after 7 days in shrimp injected with WSSV preincubated with 10 or 50 microM mytilin.  相似文献   

7.

为了鉴定对虾白斑病综合征病毒(WSSV)囊膜蛋白VP110在中国明对虾(Fenneropenaeus chinensis)鳃细胞中的结合蛋白, 运用pET-32(a)+载体构建了1段含RGD模体的截短VP110原核重组表达质粒, 转化大肠杆菌诱导表达后获得分子量为41 kD的截短重组VP110蛋白(rVP110)。以rVP110作为诱饵蛋白, 运用pull-down实验结合蛋白质谱分析鉴定rVP110结合蛋白, 结果显示, 中国明对虾鳃细胞中的肌动蛋白和精氨酸激酶(arginine kinase,AK)rVP110具有结合作用。利用PCR扩增中国明对虾AK编码基因, 将其与表达载体pGEX-4T-1连接后转化大肠杆菌诱导表达获得重组AK蛋白(rAK), 通过pull-down实验进一步证实rAK可与rVP110发生结合。克氏原螯虾(Procambarus clarkia)体内中和实验结果显示, rAKWSSV感染克氏原螯虾具有一定的中和作用, 能延缓螯虾的死亡进程。另外, 中国明对虾在人工感染WSSV, 荧光定量PCR检测结果显示, AK基因表达水平显著上调, 18 h时达到峰值, 然后下降至正常水平; 酶底物法检测结果同样显示, 鳃细胞中AK酶活性在感染WSSV后发生显著上调。本研究旨在为深入了解WSSV囊膜蛋白VP110WSSV感染宿主过程中的作用提供基础依据。

  相似文献   

8.
9.
Larvae and post-larvae of Penaeus vannamei (Boone) were submitted to primary challenge with infectious hypodermal and haematopoietic necrosis virus (IHHNV) or formalin-inactivated white spot syndrome virus (WSSV). Survival rate and viral load were evaluated after secondary per os challenge with WSSV at post-larval stage 45 (PL45). Only shrimp treated with inactivated WSSV at PL35 or with IHHNV infection at nauplius 5, zoea 1 and PL22 were alive (4.7% and 4%, respectively) at 10 days post-infection (p.i.). Moreover, at 9 days p.i. there was 100% mortality in all remaining treatments, while there was 94% mortality in shrimp treated with inactivated WSSV at PL35 and 95% mortality in shrimp previously treated with IHHNV at N5, Z1 and PL22. Based on viral genome copy quantification by real-time PCR, surviving shrimp previously challenged with IHHNV at PL22 contained the lowest load of WSSV (0-1x10(3) copies microg-1 of DNA). In addition, surviving shrimp previously exposed to inactivated WSSV at PL35 also contained few WSSV (0-2x10(3) copies microg-1 of DNA). Consequently, pre-exposure to either IHHNV or inactivated WSSV resulted in slower WSSV replication and delayed mortality. This evidence suggests a protective role of IHHNV as an interfering virus, while protection obtained by inactivated WSSV might result from non-specific antiviral immune response.  相似文献   

10.
White spot syndrome virus (WSSV), an aquatic virus infecting shrimps and other crustaceans, is widely distributed in Asian subcontinents including India. The infection has led to a serious economic loss in shrimp farming. The WSSV genome is approximately 300 kb and codes for several proteins mediating the infection. The envelope proteins VP26 and VP28 play a major role in infection process and also in the interaction with the host cells. A comprehensive study on the viral proteins leading to the development of safe and potent antiviral therapeutic is of adverse need. The novel synthesized compound 3‐(1‐chloropiperidin‐4‐yl)‐6‐fluoro benzisoxazole 2 is proved to have potent antiviral activity against WSSV. The compound antiviral activity is validated in freshwater crabs (Paratelphusa hydrodomous). An in silico molecular docking and simulation analysis of the envelope proteins VP26 and VP28 with the ligand 3‐(1‐chloropiperidin‐4‐yl)‐6‐fluoro benzisoxazole 2 are carried out. The docking analysis reveals that the polar amino acids in the pore region of the envelope proteins were involved in the ligand binding. The influence of the ligand binding on the proteins is validated by the molecular dynamics and simulation study. These in silico approaches together demonstrate the ligand's efficiency in preventing the trimers from exhibiting their physiological function.  相似文献   

11.
Intestinal microorganisms play important roles in maintaining host health, but their functions in aquatic animal hosts have yet to be fully elucidated. The Chinese mitten crab, Eriocheir sinensis, is one such example. We attempted to identify the shift of gut microbiota that occurred in response to infection of white spot syndrome virus (WSSV), an emerging viral pathogen in the crab aquaculture industry. The microbiota may exert some control over aspects of the viral pathogenesis. We investigated the changes in composition and structure of the crab gut microbiome during various WSSV infection stages of 6 h post‐infection (hpi) and 48 hpi, using a 16S rRNA approach on the MiSeq Illumina sequencing platform. Four phyla (Firmicutes, Proteobacteria, Tenericutes and Bacteroidetes) were most dominant in the gut of E. sinensis regardless of the WSSV infection stages. However, further analysis revealed that over 12 bacterial phyla, 44 orders and 68 families were significantly different in abundance at various states of WSSV infection. Several intriguing aspects of E. sinensis gut bacteria that had not been previously reported were also uncovered, such as class Mollicutes was dominant here, but absent in crabs from Yangtze River estuary and Chongming Islands. Overall, this study provided the first evidence that changes in gut microbiome were closely associated with the severity of WSSV infection and that indicator taxa could be used to evaluate the crab health status.  相似文献   

12.
Infectious hypodermal and haematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) are two widespread shrimp viruses. The interference of IHHNV on WSSV was the first reported case of viral interference that involved crustacean viruses and has been subsequently confirmed. However, the mechanisms underlying the induction of WSSV resistance through IHHNV infection are practically unknown. In this study, the interference mechanisms between IHHNV and WSSV were studied using a competitive ELISA. The binding of WSSV and IHHNV to cellular membrane of Litopenaeus vannamei was examined. The results suggested that there existed a mutual competition between IHHNV and WSSV for binding to receptors present on cellular membrane of L. vannamei and that the inhibitory effects of WSSV towards IHHNV were more distinct than those of IHHNV towards WSSV.  相似文献   

13.
近年来,重组 VP28和 VP26蛋白作为蛋白亚单位疫苗,在增强对虾抗白斑综合征病毒(WSSV)感染的过程中具有重要作用。本研究根据GenBank中WSSV的基因序列设计引物,以WSSV粗提液为模板进行普通PCR扩增,得到VP28和VP26基因,再用引物悬挂法将EcoRⅠ和XbaⅠ酶切位点分别添加到 VP28和 VP26基因的5¢端和3¢端。目的基因经双酶切后插入到表达载体pGAPZαA,转化TOP10大肠杆菌,经博莱霉素(Zeocin)抗性筛选阳性重组酵母表达载体。AvrⅡ酶切线性化之后,电击转化 X-33毕赤酵母感受态细胞,经 Zeocin 抗性筛选得到阳性重组酵母。SDS-PAGE电泳分析重组酵母表达上清液的目的蛋白,没有检测到VP28和VP26重组蛋白。随后,采用蛋白质银染法,结果显示,与空载pGAPZαA组相比,VP28和VP26表达上清液组有明显的条带,证明VP28和VP26在毕赤酵母中成功表达,蛋白分子量大小约为32 kDa。  相似文献   

14.
The objective of this study was to investigate the reason for variation in the virulence of white spot syndrome virus (WSSV) from different shrimp farms in the Southeast coast of India. Six isolates of WSSV from farms experiencing outbreaks (virulent WSSV; vWSSV) and three isolates of WSSV from farms that had infected shrimps but no outbreaks (non‐virulent WSSV; nvWSSV) were collected from different farms in the Southeast coast of India. The sampled animals were all positive for WSSV by first‐step PCR. The viral isolates were compared using histopathology, electron microscopy, SDS‐PAGE analysis of viral structural proteins, an in vivo infectivity experiment and sequence comparison of major structural protein VP28; there were no differences between isolates in these analyses. A significant observation was that the haemolymph protein profile of nvWSSV‐infected shrimps showed three extra polypeptide bands at 41, 33 and 24 kDa that were not found in the haemolymph protein profile of vWSSV‐infected shrimps. The data obtained in this study suggest that the observed difference in the virulence of WSSV may not be due to any change in the virus, rather it could be due to the shrimp defence system producing certain factors that help it to accommodate the virus without causing any mortality.  相似文献   

15.
Nucleotide‐binding and oligomerization domain (NOD)‐like receptors (NLRs) are a group of intracellular pathogen recognition receptors (PRRs) that play key roles in pathogen recognition and subsequent activation of innate immune signalling pathways. Expressions of several NLR subfamily members, including NOD1, NOD2, NLR‐C3, NLR‐C5 and NLR‐X1 have been reported in many different teleost fish species. These receptors are activated by a variety of ligands, including lipopolysaccharides (LPS), peptidoglycans (PGN) and polyinosinic‐polycytidylic acid [Poly(I:C)]. Synthetic dsRNA and bacterial or viral infections are known to stimulate these receptors both in vitro and in vivo. In this review, we focus on the identification, expression and function of teleost NLRs in response to bacterial or viral pathogens. Additionally, NLR ligand specificity and signalling pathways involved in the recognition of bacterial or viral stimuli are also summarized. This review focuses on current knowledge in this area and provides future perspectives regarding topics in need of additional investigation. Understanding the response of innate immune system to bacterial or viral infections in diverse species could inform the development of more effective therapies and vaccines.  相似文献   

16.
用添加CpG寡聚核苷酸(CpG ODN)和表面展示VP28的解脂耶罗维亚酵母(VP28-yl)的饵料投喂凡纳滨对虾,进行田间中试实验。投喂30 d后进行WSSV感染实验,评估其对凡纳滨对虾的免疫保护作用。投喂实验结束后,CpG ODN投喂组对虾的相对增重率达到(65.8±7.8)% (P<0.05),这暗示CpG ODN可能具有促生长作用。WSSV攻毒后,CpG ODN和VP28-yl投喂组对虾中WSSV拷贝数与对照组相比均显著降低(P<0.05),相对免疫保护率分别可达到26.7%和36.7%。在投喂结束和WSSV刺激后,CpG ODN组对虾中的呼吸爆发水平均显著升高(P<0.05)。而在VP28-yl投喂组,WSSV引起的细胞凋亡则显著受到抑制(P<0.05)。此外,WSSV刺激后,STAT基因在CpG ODN组和VP28-yl组对虾中的表达水平均显著上调(P<0.05),分别在第5天和第3天达到最大值,而对照组中则显著下调。研究结果表明,CpG ODN和VP28-yl增强了凡纳滨对虾抗病毒免疫力,对养殖对虾病毒性疫病的防控具有显著作用,可以作为免疫增强剂添加在饵料中,具有在养殖生产中推广使用的前景。  相似文献   

17.
Dendronereis spp. (Peters) (Nereididae) is a common polychaete in shrimp ponds built on intertidal land and is natural food for shrimp in traditionally managed ponds in Indonesia. White spot syndrome virus (WSSV), an important viral pathogen of the shrimp, can replicate in this polychaete (Desrina et al. 2013); therefore, it is a potential propagative vector for virus transmission. The major aim of this study was to determine whether WSSV can be transmitted from naturally infected Dendronereis spp. to specific pathogen‐free (SPF) Pacific white shrimp Litopenaeus vannamei (Boone) through feeding. WSSV was detected in naturally infected Dendronereis spp. and Penaeus monodon Fabricius from a traditional shrimp pond, and the positive animals were used in the current experiment. WSSV‐infected Dendronereis spp. and P. monodon in a pond had a point prevalence of 90% and 80%, respectively, as measured by PCR. WSSV was detected in the head, gills, blood and mid‐body of Dendronereis spp. WSSV from naturally infected Dendronereis spp was transmitted to SPF L. vannamei and subsequently from this shrimp to new naïve‐SPF L. vannamei to cause transient infection. Our findings support the contention that Dendronereis spp, upon feeding, can be a source of WSSV infection of shrimp in ponds.  相似文献   

18.
International Aquatic Research - Viral diseases are a serious issue for the shrimp aquaculture industry. White spot syndrome virus (WSSV) has been considered one of the most dangerous pathogens...  相似文献   

19.
White spot syndrome virus (WSSV) is a serious pathogen of aquatic crustaceans. Little is known about its transmission in vivo and the immune reaction of its hosts. In this study, the circulating haemocytes of crayfish, Procambarus clarkii, infected by WSSV, and primary haemocyte cultures inoculated with WSSV, were collected and observed by transmission electron microscopy and light microscopy following in situ hybridization. In ultra-thin sections of infected haemocytes, the enveloped virions were seen to be phagocytosed in the cytoplasm and no viral particles were observed in the nuclei. In situ hybridization with WSSV-specific probes also demonstrated that there were no specific positive signals present in the haemocytes. Conversely, strong specific positive signals showed that WSSV replicated in the nuclei of gill cells. As a control, the lymphoid organ of shrimp, Penaeus monodon, infected by WSSV was examined by in situ hybridization which showed that WSSV did not replicate within the tubules of the lymphoid organ. In contrast to previous studies, it is concluded that neither shrimp nor crayfish haemocytes support WSSV replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号