首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight study sites in Missouri and Illinois, USA, during 2007–2010. We used an information-theoretic approach to evaluate hypotheses concerning factors affecting predator-specific and overall rates of predation at landscape, edge, and nest-site scales. We found support for effects of landscape forest cover and distance to habitat edge. Predation by Brown-headed Cowbirds (Molothrus ater) increased, and predation by rodents decreased as landscape forest cover decreased. Predation by raptors, rodents, and snakes increased as the distance to forest edges decreased, but the effect was modest and conditional upon the top-ranked model. Despite the predator-specific patterns we detected, there was no support for these effects on overall rates of predation. The interactions between breeding birds, nest predators, and the landscapes in which they reside are scale-dependent and context-specific, and may be resistant to broad conceptual management recommendations.  相似文献   

2.
We studied the effects of anthropogenic edges on predation and parasitism of forest bird nests in an agriculturally fragmented landscape and a continuously forested landscape in Ontario, Canada. Nesting data were collected at 1937 nests across 10 species in the fragmented landscape from 2002–2008, and 464 nests across 4 species in the continuously forested landscape from 2006–2008. Brood parasitism only occurred in the fragmented landscape, and was positively related to the proportion of rural grassland and row crop habitats within 500-m of nests. Daily nest survival was negatively related to the density of roads within 500-m of nests in the fragmented landscape, but was not influenced by distance to anthropogenic edge in either landscape. Predation rates were higher in the fragmented landscape for Ovenbird and Rose-breasted Grosbeak nests, but did not differ between landscapes for Veery and American Redstart nests. Uniformly high predation in the fragmented landscape may be a result of (1) matrix predators that penetrate deep (>300 m) into the forest interior, or (2) the additive effect of forest-dependent and matrix-associated predators that results in high predation pressure in both edge and interior habitats. Further research focused on the identification of nest predators, their population dynamics, and habitat use is required to understand the underlying mechanisms leading to uniformly high nest predation in fragmented landscapes.  相似文献   

3.
Nest predation is an important cause of mortality for many bird species, especially in grassland ecosystems where generalist predators have responded positively to human disturbance and landscape fragmentation. Our study evaluated the influence of the composition and configuration of the surrounding landscape on nest predation. Transects consisting of 10 artificial ground nests each were set up in 136 roadsides in six watersheds in south-central Iowa. Nest predation on individual roadside transects ranged from 0 to 100% and averaged 23%. The relationship of landscape structure within spatially-nested landscapes surrounding each roadside transect (within 200, 400, 800, 1200, and 1600 m of the transect line) to nest predation was evaluated by using multiple regression and canonical correlation analyses. The results of this multiscale landscape analysis demonstrated that predation on ground nests was affected by the surrounding landscape mosaic and that nest predators with different-sized home ranges and habitat affinities responded to landscapes in different ways. In general, wooded habitats were associated with greater nest predation, whereas herbaceous habitats (except alfalfa/pasture) either were associated with less nest predation or were not important. Different landscape variables were important at different spatial scales. Whereas some block-cover habitats such as woodland were important at all scales, others such as rowcrops and alfalfa/pasture were important at large scales. Some strip-cover habitats such as gravel roads and paved roads were important at small scales, but others such as wooded roadsides were important at all all scales. Most landscape metrics (e.g., mean patch size and edge density) were important at large scales. Our study demonstrated that the relationships between landscape structure and predator assemblages are complex, thus making efforts to enhance avian productivity in agricultural landscapes a difficult management goal.  相似文献   

4.
Measuring edge effects in complex landscapes is often confounded by the presence of different kinds of natural and anthropogenic edges, each of which may act differently on organisms inhabiting habitat patches. In such landscapes, proportions of different habitats surrounding nests within patches often vary and may affect nesting success independently of distance to edges. We developed methods to measure and study the effects of multiple edges and varying habitat composition around nests on the breeding success of the Acadian flycatcher (Empidonax virescens), an understory, open-cup nesting songbird. The Kaskaskia River in Southwestern Illinois was our study area and consists of wide (>1000-m) floodplain corridors embedded in an agricultural matrix with a variety of natural (wide rivers, backwater swamps, and oxbow lakes) and anthropogenic (internal openings, and agricultural) habitats. We also measured vegetation structure around each nest. Nest survival increased with increasing nest concealment, and probabilities of brood parasitism increased with increasing distances from anthropogenic and natural water-related openings surrounding nests. The magnitude of these effects was small, probably because the landscape is saturated with nest predators and brood parasites. These results illustrate the importance of considering both larger landscape context and details of natural and anthropogenic disturbances when studying the effects of habitat fragmentation on wildlife.  相似文献   

5.
Avian nest predation is known to increase with the degree of forest fragmentation. A common explanation is that farmland allows for high densities of generalist predators, and predators penetrating into the forest cause higher nest losses at forest-farmland edges than in forest interiors. In contrast to numerous patch-level studies of forest edge effects conducted earlier, we broadened the spatial extent to the landscape. We tested the hypothesis of increased predation near farmland over distances of >4 km from forest–farmland edges into forest interiors in five mountain ranges in Germany, using artificial ground nests. We considered two landscape settings: (1) Transitions between a forest matrix and a farmland matrix, and (2) farmland patches within a forest matrix. Nest losses were not significantly higher in vicinity to a farmland matrix, but proximity to a pasture within the forest matrix strongly increased predation risk. We speculate that these differences resulted from landscape geometry. Farmland patches and matrix alike are highly attractive to generalist predators, and are regularly visited by red foxes from the forest. Predators that traverse the forest and take prey along the way, will cause a concentration of predation risk towards a patch (pasture), but not towards an adjacent matrix (farming lowlands), of feeding habitat. Contrary to previous evidence that edge effects in nest predation level off after 50 m, nest fate was related to distance to pastures across the entire study extent of 4.1 km. Our results suggest that landscape context and predator mobility may greatly affect spatial predation patterns.  相似文献   

6.
Conservation strategies should be based on a solid understanding of processes underlying species response to landscape change. In forests fragmented by agriculture, elevated nest predation rates have been reported in many forest bird species, especially near edges. In intensively-managed forest landscapes, timber harvesting might also be associated with negative edge effects or broader “context” effects on some species when the matrix provides additional resources to their major nest predators. In this study, we hypothesized that proximity to a forest edge and proportion of cone-producing plantations will increase nest predation risk in fragments of relatively undisturbed forest. We focused on the Brown Creeper (Certhia americana), an indicator species of late-seral forests. We compared habitat configuration and composition at four spatial scales (0.14, 0.5, 1 and 2 km) around 54 nests and related daily nest survival rate to the distance to the nearest forest edge, mean patch size of late-seral forest (r = 141 m), proportion of non-forested lands (r = 141 m), density of maintained roads (r = 1 km), proportion of cone-producing spruce plantations (r = 2 km), and year. The best model included distance to the nearest edge and proportion of cone-producing plantations. Distance of nests to the nearest edge was the best individual predictor of daily nest survival. A larger sample of nests showed a significant threshold in distance to the nearest forest edge; nests located at least 100 m away were more likely to fledge young. These results suggest that even in managed forest landscapes, matrix effects can be important and some bird species may exhibit negative edge effects.  相似文献   

7.
Previous research has suggested that ducks and songbirds may benefit from prairie landscapes that consist primarily of contiguous grasslands. However, the relative importance of landscape-level vs. local characteristics on mechanisms underlying observed patterns is unclear. We measured effects of grassland amount and fragmentation on upland and wetland songbird and duck density and nest success, and on some nest predators, across 16 landscapes in southern Alberta, Canada. We compared these landscape-level effects with local-scale responses, including distance to various edges and vegetation characteristics. We also evaluated several statistical approaches to comparing effects of habitat characteristics at multiple spatial scales. Few species were influenced by grassland amount or fragmentation. In contrast, distance to edge and local vegetation characteristics had significant effects on densities and nest success of many species. Previous studies that reported effects of landscape characteristics may have detected patterns driven by local mechanisms. As a corollary, results were very sensitive to statistical model structure; landscape level effects were much less apparent when local characteristics were included in the models.  相似文献   

8.
Disentangling the confounded effects of edge and area in fragmented landscapes is a recurrent challenge for landscape ecologists, requiring the use of appropriate study designs. Here, we examined the effects of forest fragment area and plot location at forest edges versus interiors on native and exotic bird assemblages on Banks Peninsula (South Island, New Zealand). We also experimentally measured with plasticine models how forest fragment area and edge versus interior location influenced the intensity of avian insectivory. Bird assemblages were sampled by conducting 15?min point-counts at paired edge and interior plots in 13 forest fragments of increasing size (0.5?C141?ha). Avian insectivory was measured as the rate of insectivorous bird attacks on plasticine models mimicking larvae of a native polyphagous moth. We found significant effects of edge, but not of forest patch area, on species richness, abundance and composition of bird assemblages. Exotic birds were more abundant at forest edges, while neither edge nor area effects were noticeable for native bird richness and abundance. Model predation rates increased with forest fragmentation, both because of higher insectivory in smaller forest patches and at forest edges. Avian predation significantly increased with insectivorous bird richness and foraging bird abundance. We suggest that the coexistence of native and exotic birds in New Zealand mosaic landscapes enhances functional diversity and trait complementation within predatory bird assemblages. This coexistence results in increased avian insectivory in small forest fragments through additive edge and area effects.  相似文献   

9.
In fragmented landscapes, remnant vegetation almost always occurs as irregular shapes and frequently with peninsulas or lobes of habitat extending into the surrounding agricultural matrix. Historical time-series of many landscapes indicate that such lobes tend to be lost through time, making remnants more regularly shaped as more habitat is lost. Although the biogeographic peninsular effect suggests that the biodiversity value of lobes should be less than remnant interiors, R.T.T. Forman has suggested that lobes in fragmented, human-dominated landscapes may provide positive ecological functions. We considered the distribution and occurrence of birds in medium-sized (ca. 2000 ha) remnants of the box-ironbark forests of central Victoria, Australia. We compared transects placed in the interiors, along edges and in lobes, finding that in general woodland-dependent species occurred throughout lobes and edges in densities substantially greater than the interiors of the remnants (often ca. 2 km from edges). We conducted analyses that weighted speciesȁ9 predilections to occupy the centres of large woodland areas using independent data. We found that: (1) species favouring centres of large woodland areas (measured using independent data) were distributed evenly throughout our study remnants; and (2) species capable of occupying smaller remnants (≤80 ha) were more prevalent in lobes and along the straight edges of remnants. These results indicate that preservation of lobes is likely to be important for maintaining avian biodiversity in fragmented landscapes, and that the addition of lobes in reconstructing landscapes through revegetation may favour birds.  相似文献   

10.
There is growing recognition that ecological research must expand its focus beyond inference based on pattern-process relationships to the direct measurement of ecological and physiological processes. Physiological assessment is important because vertebrates cope with unpredictable and noxious stimuli by initiating a stress response. However, an over-activation of the acute stress response by numerous novel and potentially stressful anthropogenic pressures, including those associated with urban edges, has the potential to generate chronic stress and a greater susceptibility to disease, reduce fecundity and survivorship. An individual??s physiological response to edge habitats with varying degrees of contrast to the adjacent disturbed urban matrix (e.g. major vs. minor roads), may provide insight into their survival likelihood in fragmented urban landscapes. Although demographic changes in wildlife resulting from urbanization have been documented, only recently have physiological consequences been examined. We addressed this problem using a case study of the squirrel glider (Petaurus norfolcensis) in the fragmented urban landscape of southeast Queensland, Australia. Hair samples were used to enable a comparison of hair cortisol levels in individual squirrel gliders, providing an indication of potential stress. We applied a linear mixed-effect modeling approach clustered by patch to quantify the influence of site-level habitat factors and relative abundance comparative to edge contrast on hair cortisol levels. We found that edge type had a strong positive effect on hair cortisol levels; but this depended on the availability of abundant nest hollows at a site. We conclude that individual hair cortisol concentration, providing an index of stress, was lowest in interior habitats and highest in edge habitats adjacent to major roads. Furthermore, gliders occupying low edge contrast habitats adjacent to residential areas and minor roads, and containing abundant tree nest hollows, had low-moderate hair cortisol levels. This highlights the potential importance of these habitats for the conservation of arboreal mammals such as the squirrel glider in urban landscapes.  相似文献   

11.

Context

Species distributions are driven by a wide variety of abiotic and biotic factors, including nest placement for breeding individuals. As such, the spatial distribution of nests within a landscape can reflect environmental heterogeneity, habitat preferences, or even interactions with predators and other species.

Objectives

We determined the extent to which environmental heterogeneity and predation risk accounted for the observed spatial distribution of nests.

Methods

We assessed the spatial distribution of 112 nests of a migratory shorebird, the Hudsonian Godwit (Limosa haemastica), at Beluga River, Alaska, from 2009 to 2012, and explicitly tested for the relative influence of habitat characteristics and predation risk on nest locations. We also evaluated the effect of nest location, distance to conspecific nests, and proximity to roads on nest fate using 64 nests that were monitored through completion.

Results

Hudsonian Godwit nests were clustered across the landscape despite a lack of significant spatial autocorrelation (i.e., patchiness) in vegetation characteristics at either the micro- or landscape scale. Nest fate also was not predicted by either the distance to the nearest conspecific neighbor or proximity to roads. Thus, neither habitat characteristics nor predation risk explained the clustering of godwit nests.

Conclusions

These results suggest that godwits may select nest locations based more on social cues than underlying heterogeneity in vegetation or predation risk. As such, intra- and inter-specific interactions should be considered when developing management plans for species of conservation concern.
  相似文献   

12.
The predator–prey relationship plays an integral role in community structure. In the presence of habitat fragmentation, the dynamic interaction among co-existing species may be disrupted. In this paper we investigated the interaction between small skinks resident in open woodland remnants and the predatory birds that cross-forage between the remnants and the surrounding peri-urban matrix. Skinks were found in significantly fewer numbers in the edge of remnants compared to their core. In contrast, predatory birds were in largest numbers at the edge compared to the core of remnants. We found that there was a strong negative correlation between skink numbers and predatory birds (individually and combined) consistent with higher predation pressure in the edge compared to the core of remnants. Strike rates on decoys that mimicked skinks were also higher in the edge compared to core habitats, consistent with higher predation rates in this edge habitat.  相似文献   

13.
The matrix is an important element of landscape mosaics that influences wildlife indirectly through its influence on habitat, and directly, if they live in or move through it. Therefore, to quantify and manage habitat quality for wildlife in modified landscapes, it is necessary to consider the characteristics of both patch and matrix elements of the whole landscape mosaic. To isolate matrix effects from the often simultaneous and confounding influence of patch and landscape characteristics, we identified nineteen 500 m radius landscapes in southeast Queensland, Australia with similar remnant forest patch attributes, habitat loss, and fragmentation, but exhibiting a marked gradient from rural through high-density suburban development of the matrix, quantified by a weighted road-length metric. We measured habitat disturbance, structure, and floristics in patch core, patch edge and matrix landscape elements to characterise how landscape habitat quality changes for small mammals. Correlation analyses identified that with increased matrix development intensity, human disturbance of core sites increased, predators and exotic plant species richness in matrix sites increased, and structural complexity (e.g. logs and stumps) in the matrix decreased. Ordination analyses showed landscape elements were most similar in habitat structure and floristics at low to moderate levels of matrix development, suggesting enhanced landscape habitat quality. Matrix development intensity was not, however, the greatest source of overall variation of habitat throughout landscapes. Many variables, such as landholder behaviour, complicate the relationship. For enhanced conservation outcomes the matrix needs to be managed to control disturbances and strategically plan for matrix habitat retention and restoration.  相似文献   

14.
Effects of forest patch size on avian diversity   总被引:10,自引:2,他引:8  
The effects of landscape patchiness on the diversity of birds of the Georgia Piedmont were investigated during 1993. Birds were sampled along line transects within relatively large (10–13.25 ha) and small (less than 3.25 ha) forest patches located within nonforest agricultural landscapes. Patterns of habitat use in these patches were compared to those in contiguous forest patches larger than 13.25 ha. Analysis of variance revealed significant differences in diversity between large and small woodlots and between contiguous and fragmented landscapes, especially in terms of the numbers of edge and interior species and winter-resident, summer-resident, and year-round birds observed.  相似文献   

15.
We studied habitat selection and breeding success in marked populations of a protected seabird (family Alcidae), the marbled murrelet (Brachyramphus marmoratus), in a relatively intact and a heavily logged old-growth forest landscape in south-western Canada. Murrelets used old-growth fragments either proportionately to their size frequency distribution (intact) or they tended to nest in disproportionately smaller fragments (logged). Multiple regression modelling showed that murrelet distribution could be explained by proximity of nests to landscape features producing biotic and abiotic edge effects. Streams, steeper slopes and lower elevations were selected in both landscapes, probably due to good nesting habitat conditions and easier access to nest sites. In the logged landscape, the murrelets nested closer to recent clearcuts than would be expected. Proximity to the ocean was favoured in the intact area. The models of habitat selection had satisfactory discriminatory ability in both landscapes. Breeding success (probability of nest survival to the middle of the chick rearing period), inferred from nest attendance patterns by radio-tagged parents, was modelled in the logged landscape. Survivorship was greater in areas with recent clearcuts and lower in areas with much regrowth, i.e. it was positively correlated with recent habitat fragmentation. We conclude that marbled murrelets can successfully breed in old-growth forests fragmented by logging.  相似文献   

16.
Habitat for wide-ranging species should be addressed at multiple scales to fully understand factors that limit populations. The marbled murrelet (Brachyramphus marmoratus), a threatened seabird, forages on the ocean and nests inland in large trees. We developed statistical relationships between murrelet use (occupancy and abundance) and habitat variables quantified across many spatial scales (statewide to local) and two time periods in California and southern Oregon, USA. We also addressed (1) if old-growth forest fragmentation was negatively associated with murrelet use, and (2) if some nesting areas are more important than others due to their proximity to high quality marine habitat. Most landscapes used for nesting were restricted to low elevation areas with frequent fog. Birds were most abundant in unfragmented old-growth forests located within a matrix of mature second-growth forest. Murrelets were less likely to occupy old-growth habitat if it was isolated (> 5 km) from other nesting murrelets. We found a time lag in response to fragmentation, where at least a few years were required before birds abandoned fragmented forests. Compared to landscapes with little tono murrelet use, landscapes with many murrelets were closer to the ocean's bays, river mouths, sandy shores, submarine canyons, and marine waters with consistently high primary productivity. Within local landscapes (≤ 800ha), inland factors limited bird abundance, but at the broadest landscape scale studied (3200 ha), proximity to marine habitat was most limiting. Management should focus on protecting or creating large, contiguous old-growth forest stands, especially in low-elevation areas near productive marine habitat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Ribe  Robert  Morganti  Roberto  Hulse  David  Shull  Robert 《Landscape Ecology》1998,13(1):1-13
Investigations using available data sought to guide short-term management decisions regarding the needs of northern spotted owl in the high Cascade Mountains of Oregon. Landscape attributes and pattern indices were measured and tested for identification of areas likely to contain northern spotted owl nests. Predictive models indicating planning standards were developed. Most landscape ecological indices were not useful. Results indicate the owl favors landscapes dominated by patches that meet definitions of late seral forest nesting habitat. The owl optimally nests in such patches at least 570 hectares in size. Landscapes with some edges, particularly around nesting habitat patches evidently do not adversely affect the owl, perhaps because they provide prey. Landscapes with extensive edges, particularly between openings and forests not suitable for nesting, are not as likely to be selected. The results are largely consistent with the owl's recovery plans, provide guidance for management, and require refinement through additional research, particularly to better determine home range sizes.  相似文献   

18.

Context

North American grassland songbird populations have declined significantly due to habitat loss and fragmentation. Understanding the influence of the surrounding landscape on prairie fragment occupancy is vital for predicting the fate of grassland birds in these heavily altered landscapes.

Objectives

We examined the relative importance of local and landscape variables on grassland bird occupancy of prairie fragments using a focal-patch study. We also investigated the spatial scale at which landscape variables were most influential.

Methods

We surveyed birds on 29 unplowed prairie fragments in western Minnesota and eastern North and South Dakota. We quantified local habitat on the fragment using vegetation surveys and aerial photographs and the landscape surrounding the fragment out to 4 km using aerial photographs. We analyzed occupancy using multi-model approaches applied to multiple logistic regression.

Results

Of 38 species encountered, nine were neither too rare nor too abundant to be analyzed. Predictors of patch occupancy were unique for each bird species, yet general patterns emerged. For eight species, landscape variables were more important than local variables. Mostly, those landscape variables measured configuration (e.g., edge density) and not composition (e.g., percent cover of a particular matrix element). Landscape effects were mostly from variables measured at the greatest extents from the prairie fragment.

Conclusions

Using a focal-patch study design we demonstrated the importance of the surrounding landscape, often out to 4 km from the fragment edge, on prairie occupancy by grassland birds. Effective management of grassland songbirds will require attention to the landscape context of prairie fragments.
  相似文献   

19.
Landscape connectivity is considered important for species persistence, but linkages among landscape populations (metalandscape connectivity) may be necessary to ensure the long-term viability of some migratory songbirds at a broader regional scale. Because of regional source-sink dynamics, these species can maintain steady populations within extensively fragmented landscapes (landscape sinks) owing to high levels of immigration from source landscapes. We undertook a modeling study to identify the conditions under which immigration, an index of metalandscape connectivity, could rescue declining populations of songbirds in heavily disturbed landscapes. In general, low to moderate levels of immigration (m = 0–20%) were sufficient to rescue species with low edge-sensitivity in landscapes where<70% habitat had been destroyed. At the other extreme, moderate to high levels of immigration (m = 11–40%) were usually required to rescue highly edge-sensitive species in these same landscapes. Very high levels of immigration (m>40%) were required to rescue highly edge-sensitive species in extensively fragmented landscapes that had lost >50% habitat, or when any landscape lost ≥50% habitat gradually over a period of 100 or more years (r = 0.5% habitat lost/year). Paradoxically higher levels of immigration were thus necessary to offset population declines when habitat was lost gradually than when it was lost quickly, where population response lagged behind landscape change. This implies that the importance of metalandscape connectivity for population viability may not be fully appreciated in landscapes undergoing rapid rates of change. Natural immigration rates for migratory songbirds match the very high levels (>40%) we found necessary to sustain populations in heavily disturbed landscapes, which underscores the importance of metalandscape connectivity for the continued persistence of many migratory songbirds in the face of widespread habitat loss and fragmentation.  相似文献   

20.

Context

The relative influence of habitat loss versus configuration on avian biodiversity is poorly understood. However, this knowledge is essential for developing effective land use strategies, especially for grassland songbirds, which have experienced widespread declines due to land use changes. Habitat configuration may be particularly important to grassland songbirds as configuration of habitat affects the extent of edge effects on the landscape, which strongly influences habitat use by grassland birds.

Objectives

We examined the relative influence of grassland amount and a measure of grassland configuration per se (Landscape Shape Index; LSI) on the relative abundance and richness of grassland songbirds.

Methods

In 2013, 361 avian point counts were conducted across 47, 2.4 km radii landscapes in south-west Manitoba, Canada, selected to minimize the correlation between grassland amount and configuration. We used generalized linear mixed-effects models within a multi-model inference framework to determine the relative importance of grassland amount and configuration on songbird response variables.

Results

Effects of grassland amount and configuration were generally weak, but effects of configuration were greater than grassland amount for most species. Relative abundance and richness of obligate species, and Savannah sparrows, showed a strong negative response to LSI, while grasshopper sparrows responded positively to grassland amount.

Conclusion

Our results suggest that habitat configuration must be considered when managing landscapes for conservation of grassland songbirds. Maintaining large, intact tracts of grasslands and limiting development of roads that bisect grassland parcels may be an effective means of maintaining grassland songbird diversity and abundance in northern mixed-grass prairies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号