首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical approach to the dynamics of the inoculum density of Verticillium dahliae in the soil: first test of a simple model
Authors:L MOL  O C HUISMAN  K SCHOLTE  & P C STRUIK
Institution:Department of Agronomy, Wageningen Agricultural University, Haarweg 333, 6709 RZ Wageningen, The Netherlands and;, Department of Environmental Science, Policy and Management, University of California, 147 Hilgard Hall, Berkeley, CA 94720, USA
Abstract:A mathematical equation was developed that describes the inoculum densities of microsclerotia of Verticillium dahliae in the soil over a long time span. The equation was based on measurable parameters and ecologically meaningful principles. In the model, the number of systemic infections of plant roots during crop growth was related to soil inoculum density. In turn, formation of microsclerotia in debris and reduction of the amount of crop growth were related to the number of systemic infections. Finally, a gradual release and mortality of microsclerotia in the soil were included to calculate subsequent inoculum densities in the soil.
Fitting the function to experimental data of potato cvs Element, Ostara, Mirka and Astarte, flax, pea, barley, sugar beet, onion and faba bean gave a very high correlation between observed and predicted soil inoculum densities. The clear differences in inoculum production among potato cultivars and other crops were expressed in quantitative terms. The highest inoculum density after incorporation of the debris of a susceptible crop was estimated to occur at 2.3 thermal time units of 3600 degree days (base 0°C). Ten per cent of the initial input of inoculum was still present after 4.5 thermal time units. The model was used to predict the dynamics of soil inoculum densities for V. dahliae under various cropping frequency schemes and performed satisfactorily.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号