(1) Division of Biological Material Sciences, Department of Biosphere Resources Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
Abstract:
To utilize acid hydrolysis lignin effectively, chemical conversion to anion-exchange resin was investigated by two methods. Sulfuric acid lignin (SAL) was selected as a typical acid hydrolysis lignin in this experiment. Because it is less reactive, SAL was phenolated with sulfuric acid catalyst to yield reactive phenolized SAL (P-SAL) with p-hydroxyphenyl nuclei. One method was the restricted resinification of P-SAL followed by the Mannich reaction with formaldehyde and dimethylamine to yield a weakly basic anion-exchange resin with an ion-exchange capacity of 2.4mEq/g. Another method was to react resinified P-SAL with glycidyltrimethylammonium chloride to yield a strongly basic anion-exchange resin with an ion-exchange capacity of 2.0mEq/g. The reaction of a simple P-SAL model compound with an epoxide suggested that the phenolic hydroxyl group of the p-hydroxyphenyl nucleus had slightly higher reactivity than that of the guaiacyl nucleus.Part of this report was presented at the 47th Lignin Symposium, Fukuoka, October 2002