首页 | 本学科首页   官方微博 | 高级检索  
     


Somatic embryogenesis efficiently eliminates viroid infections from grapevines
Authors:Giorgio Gambino   Beatriz Navarro   Rosalina Vallania   Ivana Gribaudo  Francesco Di Serio
Affiliation:(1) Istituto di Virologia Vegetale, UOS Grugliasco, Consiglio Nazionale delle Ricerche, Via L. da Vinci 44, 10095 Grugliasco, TO, Italy;(2) Istituto di Virologia Vegetale, UOS Bari, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy;
Abstract:Indirect somatic embryogenesis is effective at eliminating the most important viruses affecting grapevines. Accordingly, this technique was tested as a method for eradicating two widespread viroids, Grapevine yellow speckle viroid 1 (GYSVd-1) and Hop stunt viroid (HSVd), from four grapevine cultivars. Both viroids were detected by RT-PCR in grapevine floral explants used for initiating embryogenic cultures, as well as in undifferentiated cells of embryogenic and non-embryogenic calli from anthers and ovaries. In contrast, somatic embryos differentiated from these infected calli were viroid-free, and viroids were not detected in embryo-derived plantlets even 3 years after their transfer to greenhouse conditions. A wider spatial distribution of HSVd than GYSVd-1 within proliferating calli was revealed by in situ hybridization, whereas no hybridization signal was detected in the somatic embryos. In addition, GYSVd-1 and HSVd were localised in the nucleus of infected cells, conclusively showing the nuclear accumulation of representative members of Apscaviroid and Hostuviroid genera, which has been only an assumption so far. Somatic embryogenesis was compared to in vitro thermotherapy, a technique routinely used for virus eradication. After thermotherapy, HSVd and GYSVd-1 were detected in all in vitro plantlets of the cultivar Roussan, and in all lines analysed after 3 years of culture in greenhouse. The high efficiency with which somatic embryogenesis may eliminate viroids and viruses from several infected grapevine cultivars, should allow the availability of virus- and viroid-free material, which would be useful not only for sanitary selection but also for basic research on plant-virus and plant-viroid interactions in grapevine.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号