首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Biochar and Biosolid on Adsorption of Nitrogen,Phosphorus, and Potassium in Two Soils
Authors:H Rens  T Bera  A K Alva
Institution:1.USDA-ARS Vegetable and Forage Crop Research Unit,Prosser,USA;2.Witgang Far East Ltd.,Beijing,China;3.Soil and Water Sciences Department,University of Florida,Gainesville,USA;4.Kuwait Institute for Scientific Research,Safat,Kuwait
Abstract:Increasing the retention of nutrients by agricultural soils is of great interest to minimize losses of nutrients by leaching and/or surface runoff. Soil amendments play a role in nutrient retention by increasing the surface area and/or other chemical processes. Biochar (BC) is high carbon-containing by-product of pyrolysis of carbon-rich feedstocks to produce bioenergy. Biosolid is a by-product of wastewater treatment plant. Use of these by-products as amendments to agricultural soils is beneficial to improve soil properties, soil quality, and nutrient retention and enhance carbon sequestration. In this study, the adsorption of NH4-N, P, and K by a sandy soil (Quincy fine sand (QFS)) and a silty clay loam soil (Warden silty loam (WSL)) with BC (0, 22.4, and 44.8 mg ha?1) and biosolid (0 and 22.4 mg ha?1) amendments were investigated. Adsorption of NH4-N by the QFS soil increased with BC application at lower NH4-N concentrations in equilibrium solution. For the WSL soil, NH4-N adsorption peaked at 22.4 mg ha?1 BC rate. Biosolid application increased NH4-N adsorption by the WSL soil while decreased that in the QFS soil. Adsorption of P was greater by the WSL soil as compared to that by the QFS soil. Biosolid amendment significantly increased P adsorption capacity in both soils, while BC amendment had no significant effects. BC and biosolid amendments decreased K adsorption capacity by the WSL soil but had no effects on that by the QFS soil. Ca release with increasing addition of K was greater by the WSL soil as compared to that by the QFS soil. In both the soils, Ca release was not influenced by BC amendment while it increased with addition of biosolid. The fit of adsorption data for NH4-N, P, and K across all treatments and in two soils was better with the Freundlich model than that with the Langmuir model. The nutrients retained by BC or biosolid amended soils are easily released, therefore are readily available for the root uptake in cropped soils.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号