首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传对角回归神经网络的农机总动力预测
引用本文:修妍,马军海. 基于遗传对角回归神经网络的农机总动力预测[J]. 中国农机化, 2007, 0(5): 16-19
作者姓名:修妍  马军海
作者单位:天津大学管理学院,300072,天津市
基金项目:国家自然科学基金;天津市教委资助项目
摘    要:利用遗传算法强全局随机搜索特点,结合DRNN神经网络对非线性数据具有鲁棒性和自学习能力的优点,通过将历年农机总动力数据作为时间序列进行分析,建立DRNN神经网络预测模型对农机总量进行预测。本文采用遗传算法对DRNN神经网络进行训练,可克服基于梯度算法的神经训练算法的缺点,收敛速度快,可达到全局最优。通过与校验用数据的比较证明本文建立的预测模型具有较高的精度。

关 键 词:对角回归神经网络  遗传算法  农机总动力数据  预测技术
文章编号:1006-7205(2007)05-0016-03
收稿时间:2006-12-11
修稿时间:2006-12-11

Forecasting of Agricultural Machine Power Based on Genetic Diagonal Recurrent Neural Network
XIU Yan,MA Jun-hai. Forecasting of Agricultural Machine Power Based on Genetic Diagonal Recurrent Neural Network[J]. Chinese Agricul Tural Mechanization, 2007, 0(5): 16-19
Authors:XIU Yan  MA Jun-hai
Affiliation:1. Tianjin University, Tianjin 300072, China; 2. Tianjin Institute of Urban Construction, Tianjin, 300384, China
Abstract:Agricultural machine power is forecast by diagonal recurrent neural network(DRNN)forecasting model,which is combined the characteristic of global random search of genetic algorithm with the virtue of robust and self-study for nonlinear data of DRNN and agricultural machine power data in history is analyzed by time series.The DRNN is trained by genetic algorithm in this paper,which result indicates the method has rapid speed and reach global best of all,and can avoid the defect of neural network training algorithm based on grads algorithm.The forecasting results is compared with verify data,that prove the forecasting model in this paper has higher precision.
Keywords:Diagonal Recurrent Neural Network  genetic algorithm  agricultural machine power  forecasting technology
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号