首页 | 本学科首页   官方微博 | 高级检索  
     


Growth and gas exchange of loblolly pine seedlings as influenced by drought and air pollutants
Authors:Woong S. Lee  Boris I. Chevone  John R. Seiler
Affiliation:1. Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA
2. Department of Forestry, Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA
Abstract:One-year-old loblolly pine seedlings were exposed to 03(≤0.025 or 0.10 μ L L?1, 4 hr d?1, 3 d wk?1) in combination with simulated rain (pH 5.6 or 3.0, 1 hr d?1, 2 d wk?1, 0.75 cm hr?1) for 10 wk. After the 10-wk treatment, the seedlings were submitted to two drought cycles, and water potential, net photosynthesis (Pn), and transpiration (Tr) were measured. Whole-plant fresh weight increment and relative growth rate were significantly increased in seedlings exposed to simulated rain at pH 3.0 compared to pH 5.6. An interaction between 03 and simulated rain occurred in height growth. Shoot height elongation was significantly less in seedlings exposed to 0.10 μL L?1 03 + pH 5.6 than in any other pollutant combination after the 10-wk treatment period. There were no significant effects of 03 on Pn and Tr prior to the drought cycles; however, after the first drought cycle, Pn was significantly higher in seedlings pre-exposed to 0.10 μL L?1 03 compared to the low 03 concentration. The 10-wk treatment with simulated rain at pH 3.0 significantly increased Pn and Tr. The relationship between gas exchange rates and needle water potential during the moisture stress period was affected by preexposure to pollutants. In general, Pn and Tr were more sensitive to decreasing needle water potential in seedlings exposed to pH 3.0 during the first drought cycle and to 0.10 μL L?1 03 during second drought cycle.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号