首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorus utilization in rainbow trout (Oncorhynchus mykiss) fed practical diets and its consequences on effluent phosphorus levels
Authors:Relicardo M. Coloso   Kim King   John W. Fletcher   Michael A. Hendrix   Mark Subramanyam   Peddrick Weis  Ronaldo P. Ferraris  
Affiliation:

a Department of Pharmacology and Physiology, MSB-H621, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-2714, USA

b Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo 5021, Philippines

c Northeast Fishery Center, US Fish and Wildlife Service, Department of Interior, 308 Washington Avenue, Lamar, PA 16848, USA

d Zeigler Bros., Inc., 400 Gardners Station Road, Gardners, PA 17324, USA

e Department of Radiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-2714, USA

Abstract:Excessive dietary phosphorous (P) concentrations in effluents from aquaculture present a major environmental problem. We therefore studied the effect of dietary P and vitamin D3 on P utilization by rainbow trout-fed practical diets and on P concentrations in the soluble, particulate and settleable components of the effluent from fish tanks. Rainbow trout (average weight: 78 g, initial biomass: 13 kg in 0.7 m3 tanks) were fed for 11 weeks, practical diets that varied in total P, available P, and vitamin D3 concentrations. Soluble, particulate (10–200 μm) and settleable (>200 μm) P in the effluent were sampled every 0.5–6 h for 1–3 days in the third and eleventh weeks of the experiment. Trout in all diets more than doubled their weight after 11 weeks. Increasing the concentrations of available dietary P from 0.24% to 0.88% modestly enhanced growth rate. Feed conversion ratio (FCR) and biomass gain per gram P consumed decreased as dietary P concentrations increased. Carcass P, daily P gain, and plasma P concentrations were lower in fish fed with low P diets. Soluble P concentrations in the effluent peaked immediately after and again 4–6 h after feeding, and is a linear function of available dietary P. No soluble P would be produced during consumption of diets containing less than 0.22±0.02% available P. Above this dietary concentration, soluble P would be excreted at 6.9±0.4 mg/day/kg for each 0.1% increase in available dietary P. Particulate P concentrations in the effluent were independent of dietary P concentrations. Settleable, presumably fecal, P concentrations tended to increase with dietary P concentrations. In trout fed with low P (0.24% available P, 0.6% total P) diets, 60% of total dietary P were retained by the fish and the remaining 40% were excreted in the effluent as settleable P (20–30%) and particulate or soluble P (10–20%). In trout fed with high P (0.59–0.88% available P; 0.9–1.2% total P) diets, 30–55% of total dietary P was retained by fish, and the remaining 15–25% appeared in the effluent as settleable P, 20–55% as soluble P, and 5–10% as particulate P. Vitamin D3 did not affect fish growth nor effluent P levels. Physicochemical management of aquaculture effluents should consider the effect of diets on partitioning of effluent P, the peaks of soluble P concentration following feeding, and the contributions of particulate P to total P in the effluent. Increasing our understanding of how dietary P is utilized and is subsequently partitioned in the effluent can contribute significantly towards alleviating this important environmental and industry problem.
Keywords:Rainbow trout   Dietary phosphorous   Aquaculture effluent
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号