首页 | 本学科首页   官方微博 | 高级检索  
     

应用数字图像进行小麦氮素营养诊断中图像分析方法的研究
作者姓名:李红军  张立周  陈曦鸣  张玉铭  程一松  胡春胜
作者单位:1. 中国科学院遗传与发育生物学研究所农业资源研究中心,石家庄,050021
2. 河北农业大学资源与环境科学学院,保定,071001
3. 石家庄市第24中学,石家庄,050051
基金项目:国家自然科学基金项目(40971025)、国家科技支撑计划项目(2008BADA4B02-04, 2006BAD17B05)和中国科学院知识创新工程重大项目(KSCX-WY-09)资助
摘    要:简便、快速、经济地诊断作物氮素营养状况是实施氮肥用量调控的关键。利用数码相机对作物冠层进行拍照, 通过图像处理软件获得作物色彩参数, 根据色彩参数与作物氮素营养状况的关系可以对其氮素丰缺进行诊断。针对作物数字图像色彩参数的获取方法, 结合小麦多水平氮肥试验, 采用遥感软件PCI Geomatics的非监督分类功能, 将小麦图像分为土壤、反光叶面和不反光叶面, 与Adobe Photoshop 软件普通图像处理方法对照, 比较分析了小麦图像不同类别叶片的8 种色彩参数与SPAD 值及植株全氮的相关性。结果表明, 返青期小麦反光叶面的G/R 与R/(R+G+B)色彩参数能较好地反映小麦的氮素营养状况; 拔节期不反光叶面和反光叶面的R/(R+G+B)色彩参数与植株全氮相关性较好。利用普通图像处理软件获得色彩参数的方法有待改进, 图像分类后能够提高其色彩参数对作物氮素营养诊断的准确性。

关 键 词:冬小麦   氮素营养诊断   数字图像   图像分类   色彩参数
收稿时间:2010-07-07
修稿时间:2010-09-08
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国生态农业学报》浏览原始摘要信息
点击此处可从《中国生态农业学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号