首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil water stress at young urban street-tree sites in response to meteorology and site parameters
Institution:Institute of Soil Science, CEN, Universität Hamburg, Hamburg, Germany
Abstract:Growth conditions at urban street-tree sites are unfavorable and tree vitality is increasingly threatened by water scarcity due to changing climate. Developing adaption and management strategies to ensure early stage and long-term tree- and root growth requires thorough knowledge about root zone soil-water dynamics at young urban street-tree sites. Therefore, we established a soil water potential (SWP) monitoring at 17 young urban street-tree sites in the city of Hamburg, Germany. Over four years (2016–2019) we measured and quantified critical soil water availability in the root ball, planting pit, and surrounding urban soil using a threshold value (SWP < ?1200 hPa) and assessed the tree sites sensitivity towards meteorological variables, tree- and site characteristics using a data driven random forest model. During 2018 and 2019, average critical soil water availability in the root ball and planting pit occurred between three to five months per year, and the trees were exposed to prolonged periods of critical soil-water availability for two consecutive years. After planting, critical soil water availability increasingly shifted year wise from the root ball into the entire planting pit as a consequence of root development and increasing water demand of the trees. Considering less usable water within the surrounding sandy soils, soil water in the planting pit may be depleted earlier and more rapidly with tree aging. The random forest model successfully predicted critical soil water availability and identified tree age as an important predictor. Long-term (10-day) rainfall was the most important variable predicting the occurrence of critical soil water availability, suggesting a further extension of periods with critical soil water availability as rainy summer days are projected to decrease with climate change. Additionally we identified soil temperature as a more important predictor than air temperature as it reflects site specific characteristics affecting water- an energy balance. This study underlines the urgency to adapt the growing conditions of young urban street-trees in terms of sufficient water storage, and provides an approach for future application in tree site soil water management, to maintain their vitality under urbanization pressure and climate change.
Keywords:Soil water monitoring  Critical threshold  Soil water tension  Climate adaptation  Site adaptation  Water management  Reduced tree vitality  Soil drought  RandomForest
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号