首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Annual shoot length of temperate broadleaf species responses to drought
Institution:1. Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China;2. Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;3. State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen 518057, China;4. Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
Abstract:In recent years, Central European forests and trees have been severely suffered from drought events in the growing season. To examine the tree growth response to drought stress, measurements of annual shoot lengths (ASL) of various tree species with distinct ages and habitats were taken in southeast Germany. The index of relative ASL increase (RAI), which is a standardized ASL increase, was calculated to indicate the growth rate of various tree species between the non-drought (2015–2017) and the drought period (2018–2020). The results showed the ASLs of most early-young trees (< 10 years) significantly showed a decreasing tendency in the drought period, whereas the middle-young (11–15 years) and late-young trees (> 16 years) presented a relatively stable trend. The ring-porous species with anisohydric behavior were likely to have higher RAIs associated with higher drought tolerance than diffuse-porous species with isohydric behavior. However, tree growth rate did not correlate with drought tolerance (resistance) of tree species indicated by leaf turgor loss point (Ψtlp, MPa). Therefore, this study suggested parameters, such as growth rate, age phases, and microhabitats, should be considered to predict tree species’ drought tolerance other than Ψtlp. Finally, we emphasized tree shoot growth responses to drought were affected by multiple internal and external factors, and strongly depended on species- and site-specific characteristics, such as age phases, xylem structure, hydraulic strategy, microhabitat, grafting effect, and competition. ASL measurement can be recommended to be an easy, fast, and effective method to detect tree growth rate and response to environmental stress.
Keywords:Drought tolerance  Ring-porous species  Anisohydric species  Leaf turgor loss point  Climate change
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号