首页 | 本学科首页   官方微博 | 高级检索  
     检索      

腐熟花生壳和腐植酸复合园林废弃物堆肥对紫苏出苗的影响
引用本文:宋天宇,张璐.腐熟花生壳和腐植酸复合园林废弃物堆肥对紫苏出苗的影响[J].浙江农林大学学报,2023,40(2):304-313.
作者姓名:宋天宇  张璐
作者单位:北京林业大学 林学院,北京 100083
基金项目:国家自然科学基金资助项目(32171751,31700537)
摘    要:  目的  研究不同配比的腐熟花生Arachis hypogaea壳和腐植酸改良园林废弃物堆肥产品的效果,以及改良后的园林废弃物堆肥产品作为育苗基质对紫苏Perilla frutescens出苗的影响,探究有利于紫苏育苗的最佳配比基质,为园林废弃物的合理利用提供科学依据。  方法  运用正交设计,将不同质量分数的腐熟花生壳(0、1.5%、3.0%)和腐植酸(0、3.0%、6.0%)添加至园林废弃物堆肥产品中,通过测定基质理化性质,观察其复合效果;通过测定紫苏出苗率、出苗速度、单株叶片数、死亡率、受虫害叶片率和受虫害株率等,基于冗余分析(RDA)和隶属函数法,观察改良后的园林废弃物堆肥产品对紫苏出苗的影响。  结果  添加腐熟花生壳和腐植酸可显著 (P<0.05)降低园林废弃物堆肥产品的容重、pH和电导率,改善其含水量和孔隙度,增加其全氮、全磷、铵态氮、硝态氮、速效磷、速效钾和有机质质量分数;复合后的园林废弃物堆肥产品可显著(P<0.05)提高紫苏出苗率和出苗速度,增加其幼苗单株叶片数,降低其幼苗死亡率、受虫害株率和受虫害叶片率。冗余分析表明:紫苏出苗率、受虫害叶片率和受虫害株率与育苗基质总孔隙度以及全氮、全磷、全钾、速效钾质量分数呈正相关,与育苗基质pH、电导率、容重呈负相关;紫苏幼苗单株叶片数与育苗基质全氮、全磷、全钾质量分数以及总孔隙度呈正相关,与育苗基质pH、容重呈负相关;紫苏幼苗死亡率与育苗基质pH、电导率、容重呈正相关,与育苗基质总孔隙度以及全氮、全磷、全钾、速效钾质量分数呈负相关。  结论  腐熟花生壳和腐植酸可有效改善园林废弃物堆肥产品的理化性质,提高园林废弃物堆肥产品质量;改良后的园林废弃物堆肥产品可降低幼苗死亡程度,有利于紫苏快速出苗和成活;同时,其可显著降低紫苏幼苗虫害发生率,提高其抗虫性,达到一定的生物防治效果。其中3.0%腐熟花生壳+3.0%腐植酸为最优复配组合。图2表5参27

关 键 词:园林废弃物堆肥产品    腐熟花生壳    腐植酸    紫苏    出苗
收稿时间:2022-04-11

Effect of green waste compost combined decomposed peanut shells and humic acid on seedling emergence of Perilla frutescens
SONG Tianyu,ZHANG Lu.Effect of green waste compost combined decomposed peanut shells and humic acid on seedling emergence of Perilla frutescens[J].Journal of Zhejiang A&F University,2023,40(2):304-313.
Authors:SONG Tianyu  ZHANG Lu
Institution:College of Forestry, Beijing Forestry University, Beijing 100083, China
Abstract:  Objective  The objective is to study the effect of decomposed peanut (Arachis hypogaea) shells and humic acid with different proportions on the improvement of green waste compost products, as well as the impact of the improved green waste compost products as nursery substrate on Perilla frutescen seedling emergence, so as to explore the best proportion of the substrate conducive to P. frutescen seedling.  Method  Using orthogonal design, different mass fractions of the decomposed peanut shells (0, 1.5%, 3.0%) and humic acid (0, 3.0%, 6.0%) were added to the green waste compost products, and the composite effect was observed by measuring physical and chemical properties of the substrate. Based on redundancy analysis (RDA) and membership function method, the effects of improved green waste compost products on seedling emergence were observed through the measurement of germination rate, germination speed and number of seedling leaves per plant, mortality rate, leaf infestation rate and plant infestation rate of P. frutescen.  Result  Adding decomposed peanut shells and humic acid could significantly (P<0.05) reduce the bulk density, pH and EC values, improve the water content and porosity, and increase the mass fractions of total N, total P, NH4+-N , NO3?-N, available P, available K and organic matter of green waste compost products. And the composite green waste compost products could significantly (P<0.05) increase the germination rate, germination speed and the number of leaves per seedling, reduce the mortality rate, the percentage of insect damaged plants and damaged leaves of P. frutescen. RDA showed that the percentage of seedling emergence, the percentage of damaged leaves and damaged plants of P. frutescen seedlings were positively correlated with the total porosity, mass fractions of total N, total P, total K and available K of the substrate, but negatively correlated with pH, EC and bulk density of the substrate. The number of leaves per plant of P. frutescen seedlings was positively correlated with mass fractions of total N, total P, total K and total porosity of the substrate, but negatively correlated with pH and bulk density of the substrate. The mortality rate of seedlings was positively correlated with pH, EC and bulk density of the substrate, but negatively correlated with mass fractions of total porosity, total N, total P, total K and available K of the substrate.  Conclusion  The decomposed peanut shells and humic acid can effectively improve the physical and chemical properties of green waste compost products and optimize their quality. The optimized green waste compost products can reduce the death rate of seedlings, and facilitate the rapid emergence and survival of P. frutescen. At the same time, the optimized green waste compost products can significantly reduce the incidence of insect pests, improve insect resistance, and achieve a certain biological control effect. The optimal combination is 3.0% decomposed peanut shells + 3.0% humic acid. Ch, 2 fig. 5 tab. 27 ref.]
Keywords:
点击此处可从《浙江农林大学学报》浏览原始摘要信息
点击此处可从《浙江农林大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号