首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLO-V4网络的浅海生物检测模型
引用本文:毛国君, 翁伟栋, 朱晋德, 张媛, 吴富村, 毛玉泽. 基于改进YOLO-V4网络的浅海生物检测模型[J]. 农业工程学报, 2021, 37(12): 152-158. DOI: 10.11975/j.issn.1002-6819.2021.12.018
作者姓名:毛国君  翁伟栋  朱晋德  张媛  吴富村  毛玉泽
作者单位:1.福建工程学院计算机科学与数学学院,福州 350118;2.福建省大数据挖掘与应用重点实验室,福州 350118;3.獐子岛集团股份有限公司,大连 116001;4.中国科学院海洋研究所实验海洋生物学重点实验室,青岛 266071;5.中国水产科学研究院黄海水产研究所,青岛 266071
基金项目:国家重点研发项目(2019YFD0900800/05);国家自然科学基金项目(61773415)
摘    要:海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题.由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物是一个巨大的挑战.随着卷积神经网络的发展,基于深度学习的目标检测算法成为主流,出现了如Efficien...

关 键 词:模型  深度学习  目标检测  YOLO-V4  跨阶段局部网络  嵌连接
收稿时间:2021-02-09
修稿时间:2021-06-02

Model for marine organism detection in shallow sea using the improved YOLO-V4 network
Mao Guojun, Weng Weidong, Zhu Jinde, Zhang Yuan, Wu Fucun, Mao Yuze. Model for marine organism detection in shallow sea using the improved YOLO-V4 network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 152-158. DOI: 10.11975/j.issn.1002-6819.2021.12.018
Authors:Mao Guojun  Weng Weidong  Zhu Jinde  Zhang Yuan  Wu Fucun  Mao Yuze
Affiliation:1.School of Computer and Mathematics, Fujian University of Technology, Fuzhou 350118, China;2.Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fuzhou 350118, China;3.Zoneco Group Co., Ltd., Dalian 116001, China;4.Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;5.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Abstract:Abstract: Intelligent detection of marine organisms is a significant step of marine ranching strategy. An underwater robot is highly demanding to rapidly and accurately monitor marine organisms in the complex ocean environment. However, there is a relatively low distinction between marine organisms and their living environment, some of which are covered or semi-hidden, due mainly to the low contrast of seabed environment, and uneven distribution of brightness. Therefore, it is a big challenge to accurately identify the specific marine life in the undersea environment. Many target (object) detections using deep learning have emerged, such as EfficientDet, RetinaNet, and YOLO-V4, with the development of convolutional neural networks (CNN) in recent years. Nevertheless, the current network cannot fully meet the specific requirements of marine biological recognition. It is also necessary to improve the detection accuracy, operation speed, and detection efficiency of dense targets. In this study, an improved target (object) detection network using YOLO-V4 was designed to realize the rapid and accurate identification of marine organisms in an aquaculture environment of a shallow sea. A marine biological dataset was firstly established with 7 240 images, which were generated from 1 810 original images after data enhancement. Training (80%) and test datasets (20%) were divided. Data enhancement (suitable for the small data sample learning) effectively enriched the background and elements of the original images, thereby producing much more learning samples than before. As such, an effective expansion of the sample was achieved in the same learning effect as the large sample. Secondly, the cross-stage partial network (CSP) was successfully introduced, while the Embedded Connection (EC) component was designed to detect marine organisms. An improved YOLO-V4 network model was constructed, when the EC was embedded into the end of the YOLO-V4 network. The improved YOLO-V4 network with an EC can be expected to make the gradient flow propagate on different learning paths, while effectively delay the occurrence of gradient disappearance, aiming to improve the detection accuracy and cost-saving calculation. Finally, Marine Organism Detection (called MOD) was presented using the improved YOLO-V4 network to achieve a better performance in the complex seabed environments. The experimental results showed that the mAP50 and mAP75 of the MOD model were 0.969 and 0.734, respectively, while the computational complexity was 35.328 billion floating-point operations (BFLOPs), and the detection frame rate was 139 ms on the computer system with a graphics accelerator GeForce GTX 1650. The mAP50 and mAP75 from the MOD increased by 0.9% and 4.8%, respectively, while the amount of computation only increased by 0.2%, compared with the original YOLO-V4 model. Especially, the evaluating indicators in the MOD model improved in all studied categories, where mAP75 presented the most obvious. In addition, the precision and recall values of balance points in the MOD model were closer to (1, 1) in most cases. It can also be reasonable that the learning performance was better in the MOD than the original YOLO-V4 model, compare with the PR curves. Consequently, the finding can provide promising insightful ideas and useful references for the rapid and accurate detection of the marine organisms in an underwater robot of intelligent fishing.
Keywords:models   deep learning   object detection   YOLO-V4   cross-stage partial network   embedded connection
本文献已被 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号