首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA-LSTM神经网络的凡纳滨对虾养殖水质预测
引用本文:习文双,江敏,吴昊,潘璠,唐燕. 基于PCA-LSTM神经网络的凡纳滨对虾养殖水质预测[J]. 上海海洋大学学报, 2023, 32(1): 108-117
作者姓名:习文双  江敏  吴昊  潘璠  唐燕
作者单位:上海海洋大学 海洋生态与环境学院, 上海 201306;上海海洋大学 海洋生态与环境学院, 上海 201306;上海海洋大学 海洋水域环境生态上海高校工程研究中心, 上海 201306;上海海洋大学 水产与生命学院, 上海 201306
基金项目:上海市虾类产业技术体系建设项目(沪农科产字〔2022〕第5号);广东省重点领域研发计划项目(2020B0202010009);上海市科技兴农项目(沪农科创字〔2019〕第3-5号)
摘    要:基于上海奉贤区2个水产养殖合作社2014—2018年和2021年的检测数据,选取水温(T)、溶解氧(DO)、高锰酸盐指数(IMn)、总磷(TP)、总氮(TN)、氨氮(TAN)、亚硝酸盐氮(NO2--N)、硝酸盐氮(NO3--N)共8个水质指标进行研究,提出了基于主成分分析(Principal component analysis, PCA)和长短时记忆神经网络(Long short-term memory neural network,LSTM)的预测模型。首先采用主成分分析法对数据进行特征提取和降维,选取高锰酸盐指数(IMn)和氨氮(TAN)作为水质预测指标,建立基于PCA法的LSTM模型;接着采用PCA-LSTM模型对不同养殖塘的水质进行预测;最后,将其与单一LSTM模型进行对比以验证模型的优劣。结果表明:PCA-LSTM模型可用于凡纳滨对虾养殖池塘水中IMn和TAN的预测, 预测结果优于单一LSTM模型。

关 键 词:凡纳滨对虾  养殖水质预测  长短时记忆神经网络  主成分分析
收稿时间:2022-09-16
修稿时间:2022-11-03

Prediction of water quality in Litopenaeus vannamei aquaculture ponds based on the PCA-LSTM neural network model
XI Wenshuang,JIANG Min,WU Hao,PAN Fan,TANG Yan. Prediction of water quality in Litopenaeus vannamei aquaculture ponds based on the PCA-LSTM neural network model[J]. Journal of Shanghai Ocean University, 2023, 32(1): 108-117
Authors:XI Wenshuang  JIANG Min  WU Hao  PAN Fan  TANG Yan
Affiliation:College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China;College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China;Shanghai University Engineering Research Center for Water Environment Ecology, Shanghai Ocean University, Shanghai 201306, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
Abstract:Based on the detection data of the two farms in Fengxian District of Shanghai from 2014 to 2018 and in 2021,8 water quality indicators,including the water temperature (T), dissolved oxygen (DO), permanganate index(IMn), total phosphorus (TP), total nitrogen (TN),ammonia nitrogen (TAN), nitrite nitrogen (NO2--N) and nitrate nitrogen (NO3--N) were chosen to establish a prediction model based on principal component analysis (PCA) and long short-term memory (LSTM). Firstly, through principal component analysis which was used to reduce data feature extraction and dimension, IMn and TAN were determined to be the water quality prediction indexes to build a LSTM model based on the PCA analysis,then the PCA-LSTM model was used to predict the water quality of different ponds;Finally,comparison was carried out with a single LSTM model to verify the strengths and weaknesses of both models. The results show that the PCA-LSTM model can be used to predict IMn and TAN in Litopenaeus vannamei aquaculture ponds,and the prediction results are better than the single LSTM model.
Keywords:Litopenaeus vannamei  aquaculture water quality prediction  long short-term memory neural network  principal component analysis
点击此处可从《上海海洋大学学报》浏览原始摘要信息
点击此处可从《上海海洋大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号