首页 | 本学科首页   官方微博 | 高级检索  
     


Impacts of climate change on Swiss biodiversity: An indicator taxa approach
Authors:Peter B. Pearman  Antoine Guisan  Niklaus E. Zimmermann
Affiliation:aLand Use Dynamics, Swiss Federal Research Institute WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland;bDepartment of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
Abstract:We present a new indicator taxa approach to the prediction of climate change effects on biodiversity at the national level in Switzerland. As indicators, we select a set of the most widely distributed species that account for 95% of geographical variation in sampled species richness of birds, butterflies, and vascular plants. Species data come from a national program designed to monitor spatial and temporal trends in species richness. We examine some opportunities and limitations in using these data. We develop ecological niche models for the species as functions of both climate and land cover variables. We project these models to the future using climate predictions that correspond to two IPCC 3rd assessment scenarios for the development of ‘greenhouse’ gas emissions. We find that models that are calibrated with Swiss national monitoring data perform well in 10-fold cross-validation, but can fail to capture the hot-dry end of environmental gradients that constrain some species distributions. Models for indicator species in all three higher taxa predict that climate change will result in turnover in species composition even where there is little net change in predicted species richness. Indicator species from high elevations lose most areas of suitable climate even under the relatively mild B2 scenario. We project some areas to increase in the number of species for which climate conditions are suitable early in the current century, but these areas become less suitable for a majority of species by the end of the century. Selection of indicator species based on rank prevalence results in a set of models that predict observed species richness better than a similar set of species selected based on high rank of model AUC values. An indicator species approach based on selected species that are relatively common may facilitate the use of national monitoring data for predicting climate change effects on the distribution of biodiversity.
Keywords:Boosted regression trees   Indicator   IPCC   Landscape   Species distribution models   Surrogate species
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号