首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of freeze‐and‐thaw cycles on phosphorus availability in highland soils in Turkey
Authors:Müdahir Özgül  Adem Günes  Aslihan Esringü  Metin Turan
Affiliation:Atatürk University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, 25240, Erzurum, Turkey
Abstract:Ongoing global warming may result in colder soil and thawing cycles and will increase the frequency of soil freezing‐and‐thawing‐treated cycles (FTCs) during winter in the cool‐temperate and high‐latitude regions. The purpose of this study was to determine the effects of repeated freeze–thaw cycles on the solubility and adsorption of P in lab and field experiments on Pellustert, Argiustoll, Haplustept, Fluvaquent, and Calciorthid soils, the major soil groups in E Turkey. The results demonstrated that, depending on the soil type, the freeze–thaw cycle could increase the adsorption and desorption of P within a certain temperature range. Repeated freezing and thawing decreased equilibrium P concentration (EPC) and increased P adsorption. EPC and P adsorption were strongly correlated with the number of FTCs. The highest P adsorption and the lowest P desorption was found in Pellustert followed by Argiustoll, Calciorthid, Haplustept, Fluvaquent when refrozen at –10°C for 15 d, then thawed at +2.5°C for 18 h, and 9 times FTC. However, in the field study, the adsorption value was lower than the value obtained from the laboratory condition. It appears that increasing the frequency of freeze–thaw processes depending on increase in temperature that leads to decreased plant‐available soil P pools, thus requires more P fertilizer in soil solution to supply adequate P during the plant‐growth period.
Keywords:adsorption  desorption  freeze–  thaw cycle  P availability  soil type  soil temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号