首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere
Authors:F Conen  K A Smith
Abstract:Earlier models describing the accumulation of gases under closed chambers are based on the assumption of a constant concentration source that does not change during the time of chamber deployment. A new model is proposed which is based on the assumption of a constant production source, and takes into account possible changes in gas concentrations at the source during chamber deployment. Using N2O as an example, simulations have been carried out for different source strength and depth, diffusivities and air porosities. The main finding was a chamber‐induced increase in gas concentrations in the upper part of the soil profile, including the depth where the N2O source is located. The increase started immediately after chamber closure. Nevertheless, fluxes calculated from increasing concentrations within the chamber's headspace were always less than those expected under undisturbed conditions, i.e. in the absence of a chamber. This was due to a proportion of the gas produced being stored within the soil profile while the chamber was in place. The discrepancy caused by this effect increased with increasing air‐filled porosity and decreasing height of the chamber, and a procedure for correcting chamber flux measurements accordingly is proposed. The increase in soil gas concentrations after chamber closure was confirmed in a laboratory experiment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号