摘 要: | 针对Faster R-CNN模型对自然状态下草莓(Fragaria ananassa Duch.)识别准确率不高的问题,以地垄种植草莓的实拍图片为数据源,采用改进RPN结构和更换主干特征提取网络的方法对Faster RCNN模型进行了改进。结果表明,改进Faster R-CNN模型识别成熟草莓平均精度(AP)为0.893 0,识别未成熟草莓平均精度(AP)为0.820 7,草莓识别准确率达到较高水平,解决了未成熟草莓识别困难的问题。同时,为了检验模型的自动计数性能,依据模型的识别结果建立了自动计数与人工计数的线性回归,成熟草莓、未成熟草莓的相关系数分别为0.973 7、0.944 7,自动计数与人工计数拥有较高的相关性,表明改进Faster R-CNN模型具有较高的识别性能与计数能力。
|