首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative monitoring of temporal and spatial changes in tree water status using the non-invasive leaf patch clamp pressure probe and the pressure bomb
Authors:S Rüger  M Arend  G Zimmermann  F-W Bentrup  E Raveh  U Zimmermann
Institution:a Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
b Eidg. Forschungsanstalt für Wald, Schnee und Landschaft, WSL, Umweltwandel und Ökophysiologie, Zürcherstr. 111, Ch-8903 Birmensdorf, Switzerland
c Abteilung für Biophysikalische Chemie, Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, D-60439 Frankfurt a. M., Germany
d Abteilung für Pflanzenphysiologie, Universität Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
e Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
f Gilat Research Center, ARO Volcani Center, Negev 85280, Israel
Abstract:Real-time monitoring of plant water status under field conditions remains difficult to quantify. Here we give evidence that the magnetic-based leaf patch clamp pressure (LPCP) probe is a non-invasive and online-measuring method that can elucidate short- and long-term temporal and spatial dynamics of leaf water status of trees with high precision in real time. Measurements were controlled remotely by telemetry and data transfer to the Internet. Concomitant measurements using the pressure chamber technique (frequently applied for leaf water status monitoring) showed that both techniques yield in principle the same results despite of the high sampling variability of the pressure chamber data. There was a very good correlation between the output pressure signals of the LPCP probe and the balancing pressure values (on average r2 = 0.90 ± 0.05; n = 8), i.e. the external pressure at which water appears at the cut end of a leaf under pressure chamber conditions. Simultaneously performed direct measurements of leaf cell turgor pressure using the well-established cell turgor pressure probe technique evidenced that both techniques measure relative changes in leaf turgor pressure. The output pressure signals of the LPCP probe and the balancing pressure values were inversely correlated to turgor pressure. Consistent with this, the balancing pressure values and the cell turgor pressure values could be fitted quite well by the same firm theoretical backing derived recently for the LPCP probe (Zimmermann et al., 2008). This finding suggests that use of the LPCP probe technique in agricultural water management can be built up on the knowledge accumulated on spot leaf or stem water potential measurements.
Keywords:Leaf patch clamp pressure probe  Pressure chamber  Cell turgor pressure probe  Trees  Leaf water potential  Xylem pressure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号