首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exploring six reduced irrigation options under water shortage for ‘Golden Smoothee’ apple: Responses of yield components over three years
Authors:J Girona  M Mata  J Marsal
Institution:a Irrigation Technology, Institut de Recerca i Tecnologia Agroalimentaries (IRTA), 191 Av Rovira Roure, 25198 Lleida, Spain
b Institute of Natural Resources, Massey University, Palmerston North, New Zealand
Abstract:Water for irrigation is in short supply worldwide, therefore reduced irrigation options will have to be explored. We did this for ‘Golden Smoothee’ apple over the growing seasons of 2003-2005 at the IRTA-Estaciò Experimental de Lleida (41°37′ N; 0° 52′ E; 260 m a.s.l.), Catalonia, Spain. This region has a temperate climate with winter-dominant rainfall. Averages of annual rainfall and reference evapotranspiration over 2000-2009 were, respectively, 371 and 1023 mm. The treatments were: Control (C), receiving full irrigation; spring irrigation (SI), where at the budbreak 80 mm of water was applied followed by watering so that the total water applied in the season was either at 33% of C (SI-33) or at 50% of C (SI-50); and deficit irrigation (DI), where trees were irrigated either with 33% of C (DI-33) or with 50% of C (DI-50). Water in DI was applied either through one dripper per tree (DI-33-1d and DI-50-1d) or through two drippers per tree (DI-33-2d and DI-50-2d). Trees showed biennial bearing with 2004 being an ‘off-year’ when treatment effects on yield were largely masked by the higher values of stem water potential associated with lower crop loads. SI-50 and SI-33 performed poorly and cannot be recommended. For each of the DI treatments, the one-dripper version increased fresh market yield and fruit size. For example, although DI-50 performed better than DI-33, DI-33-1d was similar in performance to DI-50-2d. Under water shortage, we recommend whole-season application of DI-50-1d and DI-33-1d depending on the availability of water supply.
Keywords:Deficit irrigation  Fruit growth  Malus domestica  Stem water potential  Yield
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号