Cross‐resistance study and biochemical mechanisms of thiamethoxam resistance in B‐biotype Bemisia tabaci (Hemiptera: Aleyrodidae) |
| |
Authors: | Yuntao Feng Qingjun Wu Shaoli Wang Xiaoli Chang Wen Xie Baoyun Xu Youjun Zhang |
| |
Affiliation: | Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, PR China |
| |
Abstract: | BACKGROUND: B‐biotype Bemisia tabaci (Gennadius) has invaded China over the past two decades. To understand the risks and to determine possible mechanisms of resistance to thiamethoxam in B. tabaci, a resistant strain was selected in the laboratory. Cross‐resistance and the biochemical mechanisms of thiamethoxam resistance were investigated in the present study. RESULTS: A 66.3‐fold thiamethoxam‐resistant B. tabaci strain (TH‐R) was established after selection for 36 generations. Compared with the susceptible strain (TH‐S), the selected TH‐R strain showed obvious cross‐resistance to imidacloprid (47.3‐fold), acetamiprid (35.8‐fold), nitenpyram (9.99‐fold), abamectin (5.33‐fold) and carbosulfan (4.43‐fold). No cross‐resistance to fipronil, chlorpyrifos or deltamethrin was seen. Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) exhibited significant synergism on thiamethoxam effects in the TH‐R strain (3.14‐ and 2.37‐fold respectively). However, diethyl maleate (DEM) did not act synergistically with thiamethoxam. Biochemical assays showed that cytochrome P450 monooxygenase activities increased 1.21‐ and 1.68‐fold respectively, and carboxylesterase activity increased 2.96‐fold in the TH‐R strain. However, no difference was observed for glutathione S‐transferase between the two strains. CONCLUSION: B‐biotype B. tabaci develops resistance to thiamethoxam. Cytochrome P450 monooxygenase and carboxylesterase appear to be responsible for the resistance. Reasonable resistance management that avoids the use of cross‐resistance insecticides may delay the development of resistance to thiamethoxam in this species. Copyright © 2009 Society of Chemical Industry |
| |
Keywords: | Bemisia tabaci thiamethoxam resistance mechanisms cross‐resistance oxidase |
|
|