首页 | 本学科首页   官方微博 | 高级检索  
     


A novel biodegradable polyurethane based on hydroxylated polylactic acid and tung oil mixtures. I. Synthesis,physicochemical and biodegradability characterization
Authors:Hossein Izadi-Vasafi  Gity Mir Mohamad Sadeghi  Amir Babaei  Faezeh Ghayoumi
Affiliation:1.Department of Polymer Engineering and Color Technology,Amirkabir University of Technology,Tehran,Iran;2.Polymer Engineering Department, Faculty of Engineering,Golestan University,Gorgan,Iran;3.Department of Polymer Engineering, Shahreza Branch,Islamic Azad University,Shahreza,Iran
Abstract:A novel biodegradable polylactic acid-based polyurethane (PU) was synthesized via a chain extension reaction between hydroxylated polylactic acid (PLA-OH) and hydroxylated tung oil (HTO) using 1,6-hexamethylene diisocyanate (HDI) to link the two polyols and dibutyltin dilaurate (DBTDL) as a catalyst. Both PLA-OH and HTO, as polyols, were separately synthesized in our laboratory. Three different molecular weights of PLA-OH prepolymers were used, and the molar ratio of PLA-OH to HTO was also changed to investigate the effect of these two parameters on the structure and properties of the final PUs. Chemical structures of PLA-OH, HTO, and final PUs were investigated by Fourier transform infrared (FTIR) and Hydrogen-1 nuclear magnetic resonance (1HNMR) spectroscopies. Thermal transitions and thermal stability of the final PUs were, respectively, studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The FTIR and 1HNMR results showed that the chain-extension reaction of the two polyols with HDI was sufficiently achieved. The TGA results showed that the polyurethanes based on the lower molecular weight PLA segments were more thermally stable; it was not degraded up to 270 °C. DSC results showed that incorporating HTO in the PU chains led to formation of more flexible PU chains, while the glass transition temperatures of the PUs of higher PLA-OH molecular weights were higher than those of lower ones.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号