首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sorption of As(V) Species from Aqueous Systems
Authors:Dou?ová  B  Machovi?  V  Kolou?ek  D  Kovanda  F  Dorni?ák  V
Institution:1. Department of Solid State Chemistry, Institute of Chemical Technology Prague, Technická 5, Prague, Czech Republic (author for correspondence, e-mail
2. Laboratory of Molecular Spectroscopy, Institute of Chemical Technology Prague, Technická 5, Prague, Czech Republic
Abstract:Arsenic is of increasing environmental concern due to risk to plants, animal and human health. In aqueous systems arsenic is dominated by the AsV oxyanions H2AsO4 - and HAsO4 2- under oxidizing conditions. The possibility to remove arsenic from aqueous solutions, using sorption processes, was studied with both inorganic and organic-based sorbents. Both of tested inorganic sorbents, calcined synthetic hydrotalcite and calcined natural boehmite, were acceptable for removal of AsV compounds from aqueous systems at laboratory temperature (20 °C) and neutral pH due to their crystal structure changes. They were able to remove more than 70% of AsV compounds from aqueous solution at low sorbent-solution ratios (1 g L-1 and 2.6 g L-1, respectively) and relatively high concentration of AsO4 3- ions in the initial solution (about 2.10-3 mol L-1). Humic acid-type sorbents (i.e. pure humic acid and oxihumolite) efficiences remined low even at increased sorbent-solutionratios (about 20 g L-1) and significantly lower concentrations of As in the initial solution. At higher pH values (about 9), the sorption process slightly improved due to solubility of humic substances in alkaline solutions. The sorption increment did not exceed 50% of the initial As content. These results were confirmed by infrared spectroscopy. Both the original calcined and the sorbed inorganic sorbent samples show significant As-O vibrations, while in spectra of original and sorbed oxihumolite no significant As-O vibrations were observed, due to negligible content of sorbed As compounts.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号