首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌表示和特征注意力机制的机床两轴动态误差预测
引用本文:杜柳青,李宝钏,余永维. 基于混沌表示和特征注意力机制的机床两轴动态误差预测[J]. 农业机械学报, 2023, 54(11): 451-458
作者姓名:杜柳青  李宝钏  余永维
作者单位:重庆理工大学
基金项目:国家自然科学基金面上项目(52375083)、重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0372)、川渝联合实施重点研发项目(CSTB2022TIAD-CUX0017)、重庆市研究生科研创新项目(CYS22657)和重庆理工大学国家“两金”培育项目(2022PYZ005)
摘    要:针对传统方法难以揭示机床多轴插补动态误差的序列产生机制,各时间维度上的误差时序特征存在相互关联的问题,提出一种融合混沌表示(Chaotic representation, CR)和特征注意力机制(Feature attention mechanism, FA)的级联动态误差预测模型。首先,在证明多元动态误差时变演化具有混沌特性的基础上,对其进行相空间重构,将动态误差参数时间序列背后隐藏的信息在相空间中进行表达。然后,融合特征注意力机制在时间维度上动态分配相点特征权重的同时降低高维演化相空间信息冗余,进一步重塑原系统的动力学状态向量空间。最后,考虑到混沌时变演化具有长程相关性,采用双向长短期记忆(Bi-directional long short-term memory, Bi-LSTM)网络模型逼近混沌相空间内的动力学特性,实现动态误差混沌时间序列信息的有效预测。通过XK-L540型数控铣床实测数据的算例表明,相较于CRFA-LSTM模型,以及单一级联模型CR-Bi-LSTM、FA-Bi-LSTM,本文算法的均方根误差分别降低约35%、16%和43%。

关 键 词:机床  动态误差预测  混沌表示  特征注意力机制  双向长短期记忆网络
收稿时间:2023-04-26

Dynamic Error Prediction of Machine Tool Two-axis Based on Chaotic Representation and Feature Attention Mechanism
DU Liuqing,LI Baochuan,YU Yongwei. Dynamic Error Prediction of Machine Tool Two-axis Based on Chaotic Representation and Feature Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 451-458
Authors:DU Liuqing  LI Baochuan  YU Yongwei
Affiliation:Chongqing University of Technology
Abstract:To address the problem that traditional methods are difficult to reveal the sequence generation mechanism of dynamic error in machine tool multi-axis interpolation and the error time series features in each time dimension are interrelated, a cascaded dynamic error prediction model integrating chaotic representation (CR) and feature attention mechanism (FA) was proposed. Firstly, on the basis of proving that the time-varying evolution of multivariate dynamic error had chaotic characteristics, the phase space was reconstructed to represent the hidden information behind the time series of dynamic error parameters in the phase space. Then the fused feature attention mechanism further reshaped the dynamical state vector space of the original system by dynamically assigning phase point feature weights in the time dimension while reducing the redundancy of information in the high-dimensional evolution phase space. Finally, considering the long-range correlation of chaotic time-varying evolution, the bi-directional long short-term memory (Bi-LSTM) network model was used to approximate the dynamics in the chaotic phase space to achieve the effective prediction of dynamic error chaotic time series information. Compared with the Bi-LSTM model and the single cascade models CR-Bi-LSTM and FA-Bi-LSTM, the root mean square error of this algorithm was reduced by about 35%, 16% and 43%, respectively, as shown by the example of XK-L540 CNC milling machine with real data. The algorithm realized the phase space expression of dynamic error sequence generation mechanism in time dimension, and constantly played the main role of key phase point feature, with high prediction accuracy.
Keywords:machine tool  dynamic error prediction  chaotic representation  feature attention mechanism  bi-directional long and short-term memory network
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号