首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biomass,nitrogen and potassium dynamics in hydroponic rose production
Authors:Daniela Alvarado-Camarillo  Ana María Castillo-González  Libia I Trejo-Téllez  Silvia Y Martínez-Amador
Institution:1. Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, México;2. Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo, México;3. Programa de Edafología, Colegio de Postgraduados, Montecillo, México;4. Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo, México
Abstract:Purpose: Roses are one of the ornamental species of major importance and economic value. Fertilisation programmes which maximise plant growth and quality, while minimising environmental impact are important. Here, we followed the N and K dynamics during rose development with the aim to define the nutrient demands as a basis for implementing fertigation programmes.

Materials and methods: Roses with one basal break were grown in a closed hydroponic system. Destructive samples were taken to determine dry weight, N and K content. In each sample, plants were sectioned into roots, rootstock, basal break, stems and leaves from the zone of active leaves and the zone of cutting flowers, as well as the flower bud in the latter.

Results: The shoots of the active leaves and cutting flowers zones exhibited a biphasic growth; dry weight, N and K increased after pruning of the zone of active leaves and the cutting flowers zone, however, in the second phase, total dry weight did not show a significant difference between the phenological phases, while the accumulation of N and K decreased throughout the entire plant.

Conclusions: Our results suggest that greenhouse roses develop a dynamic and complex balance between the aerial parts of the plants and the roots for storage and/or transport of photoassimilates, N and K. The total demand for N was 411 and 799?mg per plant for the initial shoot development of the active leaf zone and cutting flowers zone, respectively. The demand for K was 149 and 106?mg per plant for both shoots, respectively. The loss of N (555?mg per plant) and K (167?mg per plant) from roses plants to the root environment implies that lower fertiliser inputs can be used as these nutrients may be re-uptaken by new emerging roots.
Keywords:Fertiliser use efficiency  mineral nutrition  Rosa sp  cyclic growth  ornamentals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号