首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于改进时间卷积网络的生猪价格预测方法
引用本文:王泽鹏,陈晓燕,庞涛,余富,胡肖楠,汪震. 一种基于改进时间卷积网络的生猪价格预测方法[J]. 中国农业大学学报, 2021, 26(12): 137-144
作者姓名:王泽鹏  陈晓燕  庞涛  余富  胡肖楠  汪震
作者单位:四川农业大学 信息工程学院, 四川 雅安 625014; 农业信息工程四川省高校重点实验室, 四川 雅安 625014;四川农业大学 机电学院, 四川 雅安 625014
基金项目:四川省教育厅一般项目(自然科学)(17ZB0333);四川农业大学校级本科教育教学改革重点项目(2019076)
摘    要:针对传统的生猪价格预测方法存在预测精度不够高,容易陷入局部最小值等问题,为更加精准地预测生猪价格,采用随机森林回归(RFR)、极限梯度回升(XGBoost)、轻型梯度提升机(LightGBM)3种机器学习模型和改进网络结构的时间卷积网络(TCN)模型方法,以经过Z-Score标准化预处理的西南地区某省2011—2020年每周生猪价格数据为样本,对生猪价格预测进行研究。结果表明:TCN模型预测结果的均方误差(MSE)为0.340 606,平均绝对误差(MAE)为0.288 424,决定系数(R2)为0.995 683,均优于其他3种机器学习模型;与3种机器学习模型中效果最好的极限梯度回升(XGBoost)预测结果比较,3个指标分别提升了26%、8%和0.15%。改进网络结构的时间卷积网络模型可以更加精准地预测生猪价格。

关 键 词:生猪价格  时序预测  时间卷积网络  交叉验证  网格搜索  机器学习
收稿时间:2021-05-21

A hog price prediction method based on improved temporal convolutional network
WANG Zepeng,CHEN Xiaoyan,PANG Tao,YU Fu,HU Xiaonan,WANG Zhen. A hog price prediction method based on improved temporal convolutional network[J]. Journal of China Agricultural University, 2021, 26(12): 137-144
Authors:WANG Zepeng  CHEN Xiaoyan  PANG Tao  YU Fu  HU Xiaonan  WANG Zhen
Affiliation:College of Information and Engineering, Sichuan Agricultural University, Yaan 625014, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agricultural University, Yaan 625014, China;College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
Abstract:Insufficient prediction accuracy and easy to fall into local minimums are the problems existed in traditional hog price prediction methods. In order to predict hog price more accurately, three machine learning models, e. g. Random Forest Regression(RFR), Extreme Gradient Boosting(XGBoost)and Light Gradient Boosting Machine(LightGBM)were adopted in this study. The improved temporal convolutional network(TCN)model method was also used. The weekly hog price data from 2011 to 2020 in a province in Southwest China preprocessed by Z-Score standardization were taken as study object to investigate the hog price prediction. The TCN model prediction results were shown as follows: The mean square error(MSE)was 0. 340 606, the mean absolute error(MAE)was 0. 288 424, and the coefficient of determination(R2)was 0. 995 683, which were better than the other three machine learning models. Comparing the results of the improved temporal convolutional network model with the results of the three machine learning models, the three indicators of the most effective XGBoost were increased by 26%, 8%, and 0. 15%, respectively. In conclusion, the improved temporal convolutional network model can predict the price of hog more accurately.
Keywords:hog price   time series forecast   temporal convolutional network   cross-validation   grid search   machine learning
点击此处可从《中国农业大学学报》浏览原始摘要信息
点击此处可从《中国农业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号