摘 要: | 传统的瓯柑病虫害检测方式主要依靠人工肉眼查看,效率较低,而且需要检测人员具备丰富的专业知识。针对这些问题,文章提出了基于卷积神经网络和迁移学习的瓯柑病虫害识别方法。首先选取Xception、InceptionResNetV2、MobileNetV2、DenseNet121四种深度卷积模型,然后采用迁移学习策略,将各个模型在PlantVillage数据上训练得到预训练模型,迁移到瓯柑病虫害识别模型中,并对比各个模型的识别性能。结果表明:(1)迁移学习能够大大提高模型的泛化能力,经过迁移学习后,4种模型在瓯柑病虫害训练集和验证集上的准确率均达到了85%以上,其中Xception迁移模型表现最好,准确率在训练集和验证集上分别为99.3%,97.1%;(2)在测试集上,Xception迁移模型的整体性能优于其他3种迁移模型,总体测试准确率达到了97.38%,精确率、召回率和F1 Score也均达到了97%以上。综上所述,Xception迁移模型识别精确率高,实用性强,可为今后瓯柑病虫害防控提供参考。
|