首页 | 本学科首页   官方微博 | 高级检索  
     

苹果果梗和表面缺陷的计算机视觉检测方法研究
引用本文:章文英,应义斌. 苹果果梗和表面缺陷的计算机视觉检测方法研究[J]. 浙江大学学报(农业与生命科学版), 2001, 27(5): 583-586
作者姓名:章文英  应义斌
作者单位:1. 金华职业技术学院,机械系,浙江,金华,321017
2. 浙江大学,农业工程系,浙江,杭州,310029
基金项目:国家自然科学基金资助项目(39800099)和浙江省自然科学基金资助项目(399500)
摘    要:研究了苹果果梗与果体的识别方法和果面缺陷的查找方法.根据苹果果梗的特性,提出用分块扫描判断果梗是否存在;分析了苹果的坏损表面与非坏损表面的不同反射特性,以及不同灰度值象素点数的统计特性,找出坏损区域,并从中区分出果梗和果萼.对1 5幅无果梗的图象判断准确率为100%,对90幅果梗完好图象的准确率为88%.试验证明该方法对坏损的检测是有效的.

关 键 词:计算机视觉  苹果果梗  果面缺陷  检测
文章编号:1008-9209(2001)05-0583-04
修稿时间:2001-01-26

Study on detecting methods for apple stem and defected surface with computer vision ,
ZHANG Wen ying ,YING Yi bin. Study on detecting methods for apple stem and defected surface with computer vision ,[J]. Journal of Zhejiang University(Agriculture & Life Sciences), 2001, 27(5): 583-586
Authors:ZHANG Wen ying   YING Yi bin
Affiliation:ZHANG Wen ying 1,YING Yi bin 2
Abstract:The characteristics of apple stem were studied, the existence of apple stem was detected by scanning. The different reflectance properties of defected surface and non defected surface of apples were analyzed, the statistical properties of gray value of different pixel were analyzed too. To 15 apple pictures without stem, the classification accuracy is 100%, to 90 pictures whose stems are in good condition the accuracy is 88%. This classification lasted about 1 second. the R (Red) value was used to find the suspected defected pixel, the defected area was found by region growing method and the non defected pixel (including the stem and the calyx) was discarded. Finally, the total defected area of the whole apple was worked out. The tests proved that the method for detecting defected surface was efficient.
Keywords:computer vision  apple stem  defected surface  detecting methods  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《浙江大学学报(农业与生命科学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(农业与生命科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号