首页 | 本学科首页   官方微博 | 高级检索  
     

基于MI-PCA与BP神经网络的石羊河流域中长期径流预报
摘    要:使用神经网络进行水文预报的关键之一是预报因子(输入变量)的筛选。鉴于现有方法对预报中因子与径流间复杂的非线性相关关系考虑不充分以及因子间信息重叠导致的算法"过拟合"等问题,提出了一种信息熵理论和主成分分析方法相结合的预报因子筛选方法,并应用至石羊河流域的中长期径流预报中。实例研究表明:运用基于MI-PCA的预报因子筛选方法构建的石羊河流域中长期径流预报BP神经网络模型检验期预报合格率为91.67%,优于单独基于互信息法(83.33%)和主成分分析法(75.00%)的合格率,预报精度满足相关标准规范的要求,可为石羊河流域中长期径流预报提供实际支撑。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号