首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reproductive and developmental defects in a malathion-resistant,laboratory-selected population of Drosophila melanogaster
Institution:1. Department of Computer Engineering, Modeling, Electronics, and Systems Science (DIMES), University of Calabria, via P. Bucci, — 87036 Arcavacata di Rende, (CS), Italy
Abstract:We have examined the chromosomal basis for reproductive and developmental defects that are associated with malathion resistance in a laboratory-selected population of Drosophila melanogaster. Strains homozygous for second or third chromosomes from this population were more resistant to malathion and had greater mixed-function oxidase activity, decreased fertility, and lower egg production when compared with first chromosome or susceptible strains. Some of the strains carrying resistant third chromosomes were developmentally delayed and required a significantly longer time to pupate. Delayed pupation was not associated with increased in vitro degradation of ecdysone by larvae having increased mixed-function oxidase activity, nor could it be reversed by feeding larvae ecdysone. Differences in mixed function oxidase activity among strains homozygous for second or third chromosomes were strongly correlated with malathion resistance but not with fitness. Although both second and third chromosome strains had high mixed-function oxidase activity, only fly extracts from the third chromosome strains oxidatively degraded 3H]juvenile hormone in vitro to a significant extent. A deficit of vitellogenic oocytes and increased egg laying by females in response to topically applied juvenile hormone-I supported the hypothesis that juvenile hormone titer was lower than normal in these strains. The results indicate that different polygenic systems control malathion resistance and associated fitness defects in this selected population of D. melanogaster. Although these systems are partly independent, they overlap due to pleiotropic effects of third chromosomal genes controlling mixed-function oxidase activity on female reproduction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号